

Programming for Engineers:
Removing Barriers and
Improving Outcomes

Name: Kin Kwan Leung

Supervisor: Dr. Steven Lind

Submission year: 2021

A dissertation submitted to The University of
Manchester for the degree of MEng Mechanical

Engineering in the Faculty of Science and Engineering

Department of Mechanical, Aerospace and Civil
Engineering 

Table of Contents

List of Tables 4

List of Figures 5

Glossary 6

Abstract 7

Declaration 8

Intellectual Property Statement 9

Acknowledgements 10

1. Introduction 11

2. Methodology and Redesign 13
2.1 Finding Secondary Data	 13

2.2 Finding Primary Data	 15

2.3 Programming the Software	 15

3. Literature Review 17
3.1 Barriers to Learning Programming	 17

3.2 Teaching Methods Currently In Use	 17

3.3 University Level Teaching Method	 20

3.3.1 Modifications to Traditional Method	 20

3.3.2 E-Learning	 27

3.3.3 Projects	 33

3.3.4 Competitions	 36

3.3.5 Puzzles	 36

3.4 Secondary School Level Teaching Method	 39

3.4.1 Modifications to Traditional Method	 39

3.4.2 Scratch	 40

4. Results and Discussion 43

5. Cheatsheets and Software 51
5.1 Cheatsheets	 52

5.2 MATLAB Engine API	 52

5.3 Software	 53

2

Final Word Count: 26,276 

6. Conclusions 59
6.1 Limitations	 61

6.2 Future Work	 62

7. References 64

Appendices 75
Appendix A - Reflection and Project Management	 75

Appendix B - Survey	 82

Appendix C - Participants’ Paragraph Answers and T-Test Values	 87

Appendix D - Cheatsheets	 96

Appendix E - Main Menu Code	 101

Appendix F - Questions Module Code	 103

Appendix G - InputFile.txt Code	 134

Appendix H - Test Data and Outcome	 135

3

List of Tables

1. The grade marks obtained by the students using the traditional
approach 19

2. Numerical representation of how well the intended course
outcomes were achieved by ‘LBTL’ and the traditional method 24

3. Average mark and failure rate of mechanical engineering students
using the teaching method proposed by Nikolic et al. 27

4. Percentage of students who passed, failed and withdrew using the
self-paced course in different semesters 29

5. Average results of each exercise in the robot group project 35

6. Mean programming achievements before and after the experiment 41

7. Numbers and calculations for the T-test 92

4

List of Figures

1. The percentage of students who achieved the grade in spring
2012 for the ‘Extreme Apprenticeship’ approach 24

2. The marks that the students achieved in the first semester
programming course (left) and the second semester programming
course (right) whilst using ‘Coursemarker’

28

3. An example puzzle of the ‘PPP’ software 37

4. An example of the punched hole exercise 38

5. “Programming skills are important to have in general, regardless of
profession” 43

6. “Programming skills are integral to engineers” 44

7. “Would you consider the students to be well-informed about what
engineering entails when considering their future career options?” 45

8. Whether teachers believe the given aspects are difficult for
students 47

9. Whether teachers agree that the given method should be used to
teach programming 49

10. The main menu of ART displayed on the command-line interface 53

11. The command-line interface after choosing option 1 (Fill In the
Gap) 54

12a and 12b. The command-line interface after entering the correct
line of code and after entering an incorrect line of code for Fill In the
Gap exercise

55

13. The command-line interface after entering an incorrect followed
by a correct numerical answer for the Correct the Error exercise 56

14. The descriptions for both of the Program Writing exercises 56

15a-15c. Command-line interface if the answers were not provided,
incorrect and correct for the Program Writing exercise 58

16. Initial Project Plan 79

17. Revised Project Plan 80

18. Actual Project Timeline 81

19a-19e. Screenshots of the survey 82-86

20a-20e: Screenshots of the Python and MATLAB cheatsheets 96-100

5

Glossary

• Application Program Interface (API) = An interface or set of code that allows

communication between two separate applications (Mulesoft, 2020)

• Cognitive Apprenticeship = Method of learning where ‘learners learn from a more

experienced person by way of cognitive and metacognitive skills and processes'

(Jonassen, 2008)

• Command-line interface = An ‘interface [that] allows the user to interact with the

computer by typing in commands’ (BBC, 2021a)

• Framework = A pre-constructed foundation with which programmers can use to

program applications and software (Christensson, 2013)

• Function = A chunk of code that is executed only when called by the current

thread

• Graphical user interface (GUI) = An interface that a user sees and interacts with

when utilising an electronic device (OmniSci, 2020)

• Microworld = ‘A conceptual model of some aspect of the real world’ that allows

users to ‘explore or manipulate the logic, rules, or relationships’ (Hogle, 1995)

• Module = A Python text file containing ‘executable statements as well as function

definitions’ (Python Software Foundation, 2021d)

• Statement = A line of code

• Test data = A series of valid, extreme and invalid input data for a script (BBC,

2021b) 

6

Abstract

With the world becoming more digitally reliant and sophisticated, programming has

increasingly become a core tool for much of society, engineers included. As such,

the demand for improving the teaching quality of programming is at an all-time high.

The lack of studies on teaching secondary school engineering students

programming suggests a possible knowledge gap, as many of the encountered

studies focus on teaching programming to university level students. Therefore, this

project researches into the pedagogical literature and conducts a survey on

professionals to find barriers that result in high dropout and failure rates and

teaching methods that are considered major improvements to the current methods

used, particularly for secondary schools. New software tools based in Python and

Python-called MATLAB are written to aid teaching and learning at secondary

schools based on the results and findings from the literature and surveys of

professionals. The results from the project have identified that motivation is a

significant factor in the problem, with the lack of role models, lack of problem-

solving skills, difficulty in debugging, and learning syntax and concepts all playing a

role in the high dropout rate. 67% of the survey participants believe that students

have no knowledge of what engineering entails, meaning that students aspiring to

be engineers do not know that programming is a significant part of engineering.

Another key finding is that e-learning is currently the more mature method of

teaching programming and is suitable due to the low failure rate. The programmed

software tool uses 3 unique exercises to combat the barriers that have been

identified. Further work on the software tool such as adding competition capabilities

and student testing will be needed in order to make the software an impactful

teaching tool. Further research into each identified barrier is also needed. 

7

Declaration

I hereby declare that this dissertation titled ‘Programming for Engineers: Removing

Barriers and Improving Outcomes’ is of my own original work and that no portion of

the work referred to in the dissertation has been submitted in support of an

application for another degree or qualification of this or any other university or other

institute of learning. 

8

Intellectual Property Statement

i. The author of this dissertation (including any appendices and/or schedules to

this dissertation) owns certain copyright or related rights in it (the “Copyright”)

and s/he has given The University of Manchester certain rights to use such

Copyright, including for administrative purposes.

ii. Copies of this dissertation, either in full or in extracts and whether in hard or

electronic copy, may be made only in accordance with the Copyright, Designs

and Patents Act 1988 (as amended) and regulations issued under it or, where

appropriate, in accordance with licensing agreements which the University has

entered into. This page must form part of any such copies made.

iii. The ownership of certain Copyright, patents, designs, trademarks and other

intellectual property (the “Intellectual Property”) and any reproductions of

copyright works in the dissertation, for example graphs and tables

(“Reproductions”), which may be described in this dissertation, may not be

owned by the author and may be owned by third parties. Such Intellectual

Property and Reproductions cannot and must not be made available for use

without the prior written permission of the owner(s) of the relevant Intellectual

Property and/or Reproductions.

iv. Further information on the conditions under which disclosure, publication and

commercialisation of this dissertation, the Copyright and any Intellectual

Property and/or Reproductions described in it may take place is available in the

University IP Policy, in any relevant Dissertation restriction declarations

deposited in the University Library, and The University Library’s regulations. 

9

Acknowledgements

I would like to thank my supervisor, Dr. Steven Lind for his continual guidance and

recommendations. Without him, this project simply would not have been possible.

I would also like to thank Dr. Martin Simmons from the University of Manchester and

Alex Clewett from Technocamps for helping me distribute the surveys during these

strange times. Their assistance has ensured that the project was completed with

minimal resistance. 

10

1. Introduction

Over time, but especially during the past century, the development of technology

and innovation caused the world to undergo a transformation where the standard of

living across most of the world became higher. As a result, the engineering solutions

responsible for supplying that standard became more sophisticated. Examples of

the more intricate solutions include modelling and simulation engineering, and CNC

machine operating. To combat this, the engineering sector embraced the use of

programming to find complex answers, and teaching programming to university-

level students gradually became the norm. As the Information Age continued,

however, it became evident that that was insufficient and programming should have

been taught at an earlier stage, as reflected by the need of the Department of

Education (2013a; 2013b) to change the national curriculum to include computing

for students in secondary schools as well as the emphasis of programming physical

components such as microcontrollers and actuators in design and technology.

Another implication by the change in curriculum is that there are insufficient ‘digitally

literate’ individuals in an ever-developing society, which would place those people

at a disadvantage when looking for job prospects against people who do know how

to program (Department of Education, 2013a). Hence, the Department of Education

(2013a) necessitated the teaching of programming to secondary school students.

Whilst there had been numerous studies relating to the optimum methods for

teaching programming to university students such as the use of ‘Team-Based

Learning’ by Elnagar and Ali (2012) or the mixture of ‘LEGOs and LabVIEW’ by

Wang (2001), there has been little focus on the teaching methods of programming to

engineering students in secondary schools, either in terms of programming

languages sought by engineers, or problems in an engineering context.

11

The purpose of this project is two-pronged: the first aim is to identify successful

teaching methods, obstacles as well as barriers that currently plague programming

students in secondary schools (commonly between the ages of 11 to 18). Barriers

may be in the form of theory that programming students consider difficult, or it may

appear in the form of stereotypes that discourages students from seeking a career

in programming in the first place. To accomplish the aim, a set of objectives have

been established:

• To create, distribute, collect and analyse a questionnaire from professionals in

secondary schools relating to the methods of teaching and identify the barriers

that students face

• To study and critically evaluate pedagogical literature for the various successful

teaching methods that have been examined

The second aim of the project is to utilise what has been discovered in the survey

and the pedagogical literature to create software with a series of programming

exercises that work around the obstacles to assist in the study of engineering

students in secondary schools. Due to MATLAB being recognised as valuable ‘for

simulation-based engineering research and even in some experimental setups’ and

the ability of Python to call MATLAB, the objectives of the second aim are outlined

as (Azemi and Pauley, 2008):

• To study Python and all of its API capable of assisting in the development of the

software as well as the deployment of MATLAB

• To design activities highlighting the common oversights students have with

programming

• To design programming exercises in Python and Python-called MATLAB based

on GCSE and A-Level engineering problems

12

• To design cheatsheets for MATLAB and Python to improve understanding of the

students

• To test the software with a series of test data in order to identify any bugs

What remains of the project is structured as such: firstly, the tools, methods, and

reasoning for choosing to use the methods are discussed in the next section.

Afterwards, a literature review based on the first aim is included, followed by an

introduction and discussion of the results obtained from the survey. Next, the main

features of the written code are presented. Finally, a conclusion based on the

research carried out is drawn at the end, before an evaluation of the project and

recommendations for future work.

2. Methodology and Redesign

2.1 Finding Secondary Data

In terms of secondary sources of data, a detailed literature review was carried out

on academic journals based on Google Scholar, and reports from government

websites and examination boards to evaluate teaching techniques that teachers at

secondary schools have used to boost the understanding of the students. Many of

the academic journals were obtained from the Association of Computing Machinery

(ACM), IEEE, and ScienceDirect, with a handful from Semantic Scholar and

ResearchGate. An additional focus was made on evaluating teaching methods of

programming to university-level students because of the breadth of related

academic journals that already exist (Vihavainen et al., 2014). Once collated, an

analysis was carried out to find the optimum methods for teaching programming to

secondary school students beginning with the identification of barriers that cause

researchers to research into the topic of learning programming. Subsequent

13

subsections then go into the methods of programming teaching that are currently

used for university-level and secondary school level, before an analysis into the

research into newer successful teaching methods, bearing in mind that the teaching

structure of university and secondary schools are unalike hence slight adjustments

may be required for the proposed teaching methods.

Filters were applied to the searches to ensure articles were relevant to the research

topic, and several keywords, as well as a combination of keywords, were used. The

keywords were:

• Diversity

• Engineering programming

• Introductory programming

• Successful programming

• Programming

• Programming skills/course/syntax

• Secondary/Middle school

• Students

• Teaching programming/methods

• University

• Difficulty

• Learning

• Barriers

• Motivation

To prevent old data, which may no longer be accurate, from influencing the project,

research papers before 1997 were not considered. Also, extra care was made to

ensure that only peer-reviewed journals were included in the literature review. Many

14

of the research papers considered were not reliant on any particular programming

languages since the process of learning programming goes beyond learning any

individual programming language (Vihavainen et al., 2011).

The data gathered from the pedagogical literature then formed the basis of the

primary data collection.

2.2 Finding Primary Data

Primary data was acquired in the form of surveys completed by professionals in

secondary schools; the reason behind this was due to the experience that the

professionals have when teaching the secondary school students and may have

spotted barriers that current programming students have to deal with. The survey

was be split into four main sections (see Appendix B): one regarding programming

in general; one regarding factors that may affect a student’s choice of career; one

regarding the challenges that students have about learning programming; one

regarding programming teaching methods that the professionals would consider to

be successful. Digital copies of the survey were then be distributed to secondary

schools based on the contacts that the university currently has as well as the

contacts that the author has.

The primary and secondary data collection satisfied the first two objectives listed in

the introduction and was used to conclude the first aim of the project.

2.3 Programming the Software

Concurrently to carrying out the literature review and the development of the survey,

time was allocated to study MATLAB and Python programming languages and its

Application Program Interface (API) to allow the communication between MATLAB

15

and Python codes. This was done by researching online resources and books

offered by the university library. The change to not include GUIs due to the difficulty

of coding the software in the timeframe given meant that research into the

frameworks of Python did not occur.

The first step in programming the software was done by researching the

specifications of GCSE and A-Level Mathematics for problems related to

engineering, such as mechanics (WJEC, 2019d). Then, using the data gathered from

primary and secondary sources, the type of software and engineering-related

exercises that should be coded were designed and programmed. During all of this,

test data was used to flesh out all the bugs and errors in order to prevent unneeded

crashes of the software. Finally, cheatsheets containing the syntax of Python and

MATLAB were also made so that students can refer to the sheets when assistance

with the exercises is necessary. With the completion of programming the software,

all the objectives for the second aim were completed. 

16

3. Literature Review

As set out in the introduction, a series of pedagogical literature was reviewed to find

various successful teaching methods. The section is split such that some of the

barriers that motivate the research by various researchers are introduced. Then,

what is considered current teaching methods are discussed. Following that,

research papers are divided between university-level teaching methods and

secondary school teaching methods, which is further subdivided into the various

categories of teaching methods. In some instances, the teaching methods

discussed belong to more than one category.

3.1 Barriers to Learning Programming

Numerous research has taken place on barriers that could potentially prevent

students from learning to program. According to Yacob and Saman (2012),

problems such as the lack of problem-solving and abstraction skills have been

identified. Although confidence does not necessarily mean success, the lack of

confidence and motivation has been shown to be an important factor in students

dropping out of courses (Yacob and Saman, 2012). A separate study by Guo (2018)

found that non-native English speakers had trouble reading English programming

materials such as textbooks and online resources as well as source codes by other

people. Nikolic et al. (2018) stated that decomposing problems when learning to

program is difficult.

3.2 Teaching Methods Currently In Use

To begin the investigation into successful teaching methods, the second step was

to identify the teaching methods currently in use in schools around the United

17

Kingdom. Although there is no set method for teaching programming, the

examination boards provide the assessments for GCSEs and A-Levels as well as

guidance for teaching the subject.

According to the AQA (2020), Pearson (2020), OCR (2020a) and, WJEC (2019a) the

method of assessment for GCSE Computer Science is two exams, which may be

written exams, or a written exam and an on-screen exam depending on the

examination board. Furthermore, AQA (2020), OCR (2020a), and WJEC (2019a)

require students to undertake a 20-hour programming project, with the WJEC

project accounting for 20% of the GCSE marks. On the other hand, of the

examination boards which provide A-Level Computer Science, the course is split

into AS Level and A2 Level depending on the level the student would like to

achieve. For AS Level, AQA (2019a), OCR (2020b), and WJEC (2020) all have similar

assessments with only two exams, whereas for the A2 Level the aforementioned

examination boards require a total of four exams as well as a practical project

(WJEC, 2019b; OCR, 2020c). Instead of AS and A2 Level computer Science,

Pearson (2019a) awards BTEC Level 3 ‘Software Development Context and

Methodologies’, which requires two on-screen exams to be completed.

For the WJEC (2021), the newly added blended-learning resources along with the

mini activities are supplied for the teachers to plan the lessons around. On the

contrary, AQA (2021) provided the teachers with textbooks for teaching the material

to students. From the material that has been provided to the teachers by the

examination boards as well as the type of assessments available, the teaching

methods that are currently in use for secondary schools students can be seen as

traditional methods used for assessing other more mature subjects despite having

programming projects since the textbooks and blended-learning materials are more

18

towards content-learning rather than applying the newly-acquired knowledge to

practical problems (AQA, 2021; WJEC, 2021). The result that can be observed when

using the traditional approach for teaching computer science, and hence

programming, is a high percentage of students (34.7% - 41.2%) who achieved

grades of D/3 and below according to the various examination boards in 2019

(AQA, 2019b; Pearson, 2019b; OCR, 2019; WJEC, 2019c).

Whilst there is no set method of teaching for programming at the university level

either, Vihavainen et al. (2011) described what is considered the traditional approach

to teaching programming as lectures based around a programming language and

several pieces of coursework with predetermined model answers. Blumenstein

(2002) conducted a study on such an approach as the method was considered an

improvement from before the year 2000. With two hours of lectures and two hours

of laboratory sessions per week and centred around the Java programming

language, the course described by Blumenstein (2002) utilised two exams, a

project, and the laboratory sessions as the assessment methods. Having minor

changes over the four semesters, the failure rates were 14.7%, 26.6%, 12.8%, and

12.39% respectively for the students who participated in the entirety of the course

(see Table 1). Although Blumenstein (2002) concluded that the failure rates were

19

Table 1: The grade marks obtained by the students using the traditional approach (source:

Blumenstein, 2002)

acceptable, the high failure rates would later be the premise for further research into

alternative teaching methods of programming (El-Zein et al., 2009; Vihavainen et al.,

2011; Elnagar and Ali, 2012). Unfortunately, the aforementioned results may be

inaccurate as the grade profile percentages do not add up to 100% per semester

and no number of participants were given, and the age of the study suggests the

results are redundant.

3.3 University Level Teaching Method

3.3.1 Modifications to Traditional Method

Whilst several studies all agreed that the traditional method of lectures and

examinations are unsuitable for teaching programming due to the high dropout

rates and lack of engagement from the students, each group sought to modify the

traditional method instead of dropping the method altogether (Vihavainen et al.,

2011; Elnagar and Ali, 2012; Rubio et al., 2013).

Early research into improving the outcomes for teaching programming included pair

programming (McDowell et al., 2002; Nagappan et al., 2003). The main difference

between the approach described by Blumenstein (2002) and pair programming is

that students were paired up for laboratory sessions and assignments. In the case

of McDowell et al. (2002), the resulting improvements included higher quality

assignments and a higher retention rate of the students when compared to the

traditional approach, though an anomaly was observed on the scores for the final

exam. Also using null hypothesis testing, Nagappan et al. (2003) concluded that pair

programming resulted in a higher pass rate for exams and coursework, and a

reduction in workload for the teaching staff as compared to a control group learning

via the traditional approach. Even though the research seems dated, several

20

researchers would incorporate pair programming and teamwork into newer teaching

methods of programming, which are described below.

Lui et al. (2004) implemented the ‘Perform’ approach to avoid students

misinterpreting the concepts given and to avoid ambiguity. Instead of metaphors,

analogies, and technical terms, extra examples are given to the students instead

(Lui et al., 2004). New concepts taught using the ‘Perform’ approach would be built

up from the examples in order to foster a sense of familiarity and retain confidence,

and integrated development environments would be avoided to also retain

confidence. The results provided indicated that confidence was built up as a result

of the course and the failure rate was dropped by 40% compared to the traditional

method (Lui et al., 2004). Because little data was supplied by Lui et al. (2004), the

statistic provided by the study cannot be verified, and with insufficient information

regarding the method utilised, repeating the method is infeasible for other

programming courses. Due to the age of the study, the method proposed by Lui et

al. (2004) may be obsolete as new research is conducted and programming evolves.

Stressing that other programming courses favour teaching the concepts rather than

the skills, Woodley and Kamin (2007) devised a strategy with a higher emphasis on

skill-learning; lecture hours were reduced to one every week, and students were

assigned projects to work on. On a weekly basis, a two-hour discussion session

was assigned where students were asked to hold a presentation detailing the

progress of the assignment, which was then subjected to questions and

constructive criticism (Woodley and Kamin, 2007). The success of the course was

measured by asking the students to replicate the first assignment designated to the

students; Woodley and Kamin (2007) reported that less experienced programming

students improved more than the experienced programming students by observing

21

the quality of the code. According to the study, extra effort was taken to analyse the

costs of the course, so smaller departments may replicate the same results.

However, an improvement over the traditional approach cannot be observed due to

the lack of statistics.

Vihavainen et al. (2011) defined the 'Extreme Apprenticeship’ method as further

development on top of the cognitive apprenticeship model. The goal of the paper

was to describe a method of teaching that reduces the dropout rate of students

from programming courses by maintaining interest and motivation. The idea behind

the model is that on top of the modelling (a demonstration of the concept performed

by an expert), scaffolding (exposure of exercises generated by experienced

instructors for the students) and fading (mastery of a task) stages of the cognitive

apprenticeship model, a set of criteria has to be satisfied; the main points include a

higher emphasis on completing a large set of relevant exercises and keeping the

hours of lectures to a minimum, as well as continuous feedback to ensure that

students were encouraged whenever a small goal has been achieved to retain

motivation or guide the student whenever the exercise seemed challenging

(Vihavainen et al., 2011). The study concluded that the 'Extreme Apprenticeship’

had a significant positive effect on the number of students that passed, with a pass

rate of 70.1% and 86.4% as opposed to the 47.7% and 50.0% respectively for the

two courses from the same semester the previous year. Although undeniable that

the pass rate is higher than any previously observed pass rate by a margin, there

has been a general trend of improvement from previous years such that concluding

this after only one semester is premature without more data after the new method

has been adopted. This may also explain the improved pass rate of this method

being lower than the traditional method, as some of the challenges of the method

22

had not yet been resolved. The focus on the positives meant no possible drawbacks

were considered when applying this method. Nonetheless, the goal of increasing

motivation can be observed by the anonymous feedbacks remarking the course as

‘motivating and rewarding’ (Vihavainen et al., 2011).

On the contrary, Elnagar and Ali (2012) proposed the use of what is termed the

‘Modified Team-Based Learning’ approach for teaching programming. Similar to the

approach suggested by Vihavainen et al. (2011), the aim of the paper was to

discover a method of teaching that reduces the dropout rate of students. However,

the ‘Modified Team-Based Learning’ also drastically reduced the lecture time whilst

also keeping the final examination in (Elnagar and Ali, 2011). According to Elnagar

and Ali (2011), the students were given the material beforehand and each session

was then split into multiple smaller sections: lecture, discussion, quiz, and

feedback; teams were formed at the beginning of the semester for the group

discussions, and the feedback of the quiz was given immediately after the quiz

(Elnagar and Ali, 2012). In the study, ‘603 students over two years’ participated,

meaning the experiment covered four semesters, which is a solid amount of data

compared to the study conducted by Vihavainen et al. (2011). From Figure 1, the

results show that there is a clear positive trend between the new method Elnagar

and Ali (2012) utilised compared to the traditional method used by the control

group, as more people obtained a higher grade using the ‘Modified Team-Based

Learning’ method than the traditional approach.

23

Furthermore, Table 2 shows that all of the learning outcomes set by Elnagar and Ali

(2012) were better achieved using the ‘Modified-Team-Based Learning’ approach

than the traditional approach.

One main advantage of the ‘Extreme Apprenticeship’ approach by Vihavainen et al.

over the ‘Modified Team-Based Learning’ approach is that the method has been

24

Figure 1: The percentage of students who achieved the grade in spring 2012 for the

‘Extreme Apprenticeship’ approach (source: Elnagar and Ali, 2012)

Table 2: Numerical representation of how well the intended course outcomes were achieved by

‘LBTL’ and the traditional method (source: Elnagar and Ali, 2012)

identified with motivation problems such as socialising rather than working, which

the ‘Extreme Apprenticeship’ method does not have (Elnagar and Ali, 2012).

Although the previous two methods can be adapted for use by engineering

students, the approach Rubio et al. (2013) proposed was gauged with engineers in

mind, who may not have the computational thinking of students studying computer

engineering or science. The method involves utilising Arduino board in an approach

termed ‘Physical Computing Paradigm’, where the ‘computational concepts … [can

be taken] into the real world’ (Rubio et al., 2013). The approach has very little

difference to the traditional teaching method except for the lecturer demonstrating

the concepts using the Arduino board and simple circuitry; for instance, using

‘loudspeaker to teach arrays’ and lights are used to teach conditional structures

(Rubio et al., 2013). The demonstrations were then the premise for laboratory

sessions held twice to three times during the duration of the course described.

According to the study held by Rubio et al. (2013), an increase of 32% of students

attained a good level of programming between the ‘physical computing paradigm’

and the traditional method. Furthermore, an increase of 21% students felt

comfortable programming independently from the lecturer and lab assistants

compared to the traditional method (Rubio et al., 2013). Similar to the ‘Extreme

Apprenticeship’ method, the study concluded that there was an increase in the

motivation by the students as well as an increase in the number of students who

enjoyed programming after adopting the new method (Rubio et al., 2013).

Nevertheless, the study did not disclose the precise number of students who

participated in this study, nor defined what ‘a good programming level’ is and so is

difficult to compare effectiveness with the other teaching methods.

25

Attempts at introducing programming to several disciplines at once were conducted

separately by Nikolic et al. (2018) and Dawson et al. (2018) in order to improve the

programming pass rates of students not studying computer science. Videos and

quizzes on topics that needed to be learnt prior to the lecture were released before

the lecture. Although both studies reduced the time for lectures, Nikolic et al. (2018)

opted for laboratory sessions, where students worked on engineering-based

exercises supplied by programming textbooks whereas Dawson et al. (2018) opted

for group assignments such that any student who was discouraged from being

unable to solve a problem may be supported by peers. Of the 166 mechanical

engineers who entered the course proposed by Nikolic et al. (2018) over the course

of two years, the average failure rate was 9.7% (see Table 3), lower than the

traditional method mentioned in the previous subsection and lower than the

proposed ‘Extreme Apprenticeship’ approach by Vihavainen et al. (2011). On the

other hand, the method proposed by Dawson et al. (2018) achieved a failure rate of

4% for degrees unrelated to science, arts, and commerce over a course of two

semesters; the pass rate was 83% on the proposed method as opposed to the 75%

of the more traditional approach used in the same year (Dawson et al., 2018). In

terms of motivation, Nikolic et al. (2018) observed that unless students had a desire

to learn about programming passively, the method proposed would be ineffective as

a teaching method. In contrast, Dawson et al. (2018) attempted to combat this

motivational barrier by centring the course around a project that students could

choose.

Of the methods described, Dawson et al. (2018) and Nikolic et al. (2018) were the

more successful of the teaching methods based on pass rate. However, when

considering the aim of increasing motivation as well, the teaching method by

26

Vihavainen et al. (2011) seemed to have a higher combined pass rate and

motivation retention rate than either of the aforementioned methods.

3.3.2 E-Learning

Contrary to the viewpoint of Vihavainen et al. (2011) that students should not solve

problems by themselves due to the possibility of learning bad habits, several

studies embraced independent working by introducing automated e-learning

approaches of teaching and an emphasis on self-marking systems because having

different people mark results would cause inconsistency (Higgins et al., 2005).

Higgins et al. (2005) employed ‘Coursemarker', which according to the researchers

would increase the reliability, consistency, and quality of the feedback given to

students as well as scalability. Specifically-worded questions and skeleton codes

for the questions are stored and supplied using ‘Coursemarker’, which students can

access; the students then develop solutions and submit the answers back into the

system, which is then checked based on a number of pre-defined factors and

feedback is then relayed back to the student automatically (Higgins et al., 2005).

The system was incorporated into two courses assessed via reports, multiple-

choice questions, and reports on top of two weekly exercises using ‘Coursemarker’.

From that, six years worth of data was gathered, and Higgins et al. (2005)

27

Table 3: Average mark and failure rate of mechanical engineering students using the teaching

method proposed by Nikolic et al. (source: Nikolic et al., 2018)

concluded that ‘Coursemarker' had an impact on students becoming good

programmers and achieving better grades with a pass rate of 92% and 93% for the

two courses and most students obtaining percentages of 70% or higher (see Figure

2). Although the study was done rigorously with contingencies in place to counter

plagiarism and bugs, the data is outdated due to the age of the study, and the

teaching method may no longer be suitable for implementation into newer courses.

Additionally, no data was provided prior to adopting ‘Coursemarker’, and so the

provided data can not be used to gauge by how much the students had improved

with and without the system in place. In contrast to the ‘Extreme Apprenticeship'

and 'Physical Computing Paradigm’ approaches from the previous subsection,

there was no analysis done on the motivation of the students once ‘Coursemarker’

was adopted (Higgins et al. 2005).

With diversity, problems of low motivation, and high dropout rates in mind, Gill and

Holton (2006) introduced a self-paced course where lectures were eliminated and

the learning material was provided within the course websites. In agreement with

Dawson et al. (2018), Gill and Holton (2006) set up a peer support system and

allowed teamwork in order to motivate the students to learn; to ensure that students

28

Figure 2: The marks that the students achieved in the first semester programming course (left) and

the second semester programming course (right) whilst using ‘Coursemarker’ (Source: Higgins et

al., 2005)

were not entirely reliant on other members of the team during group work, students

were given assignment-related questions to answer during the marking process.

Also, to ensure the students were motivated to learn and prevent students from

falling too far behind, a series of participation marks were awarded throughout the

semester for meetings and filling in progress journals (Gill and Holton, 2006).

Utilising chi-square tests, improvements on the pass rates can be observed, though

the failure rates seem to have a sizeable difference from semester to semester, with

13% being the latest rate given from 19% (see Table 4) (Gill and Holton, 2006).

Disagreed that lectures should be completely eliminated, an engineering-

programming-based study decided to use what is called the ‘Self-Practice Online

Tool’ (SPOT) to aid students in understanding the concepts taught in lectures with

the aim of reducing the number of students who fail the course (El-Zein et al., 2009).

According to the study, ‘SPOT’ has three banks of questions: one for testing the

understanding of the student on the syntax, one for asking the students to fill in

gaps in a half-filled code, and another for telling the students to design and solve

problems from nothing. In the feedback survey given by the author of the study, 383

responses were given during the two years of the experiment, of which ’75% found

… [SPOT] to be useful or very useful’. The exams and quizzes provided by the

course were noted to be more difficult whilst the experiment was occurring as

opposed to the years before the experiment. Despite this, one noticeable difference

29

Table 4: Percentage of students who passed, failed and withdrew using the self-paced course in

different semesters (source: Gill and Holton, 2006)

between the years 2006 to 2007 is that the failure rate dropped from 20% to 15%

for the course with clear improvements for certain questions of the exam (El-Zein et

al., 2009). According to the evaluation of the students on the course from the El-

Zein et al. study (2009), the effectiveness in learning due to the teaching had

increased throughout the three years by 17% and 15% respectively, which implied

that the students were more willing to learn the content. The study did not achieve

the aim of reducing the number of students who failed the course, since the failure

rate was 14% in 2005 and 15% in 2007, possibly indicating that the method by Gill

and Holton (2006) was superior. On the contrary, the trend implied that had the

study by El-Zein et al. (2009) carried on for another year, the aim of the study would

have been achieved.

In 2013, Rehberger et al. also conducted an e-learning study with the reasoning that

large programming classes that are common at universities cause a lot of

organisation problems, which is akin to the reasoning for developing the

aforementioned ‘Coursemarker’. With the name ‘PIT’, the types of questions that

can be asked are also similar to ‘Coursemarker’; questions about developing and

submitting code, logic circuits, flowcharts, single and multiple-choice questions as

well as text-based questions (Higgins et al., 2005; Rehberger et al., 2013). The main

dissimilarity of the ‘PIT’ tool with the ‘Coursemarker' is that the ‘PIT’ tool has the

capability to conduct live polls during lectures, and students can use the tool to

program alongside the lecturer during tutorials when the solutions are being

developed live (Rehberger et al., 2013). To complete the study, the ‘PIT' tool was

incorporated into a course, where three tests during the semester are given along

with a final exam. The only relevant conclusion that can be drawn from the data is

the average score of the course rated by the students improved from 3.8 to 2.3 out

30

of 6 (Rehberger et al., 2013). Although that is a sign of improvement, there could be

a number of factors besides the ‘PIT’ tool which could have positively affected the

course rating. Furthermore, since only one year worth of data was gathered, the

study given by Rehberger et al. (2013) suffers the same problem as the ‘Extreme

Apprenticeship’ study, where the conclusion may be premature due to an

insufficient amount of data.

Another e-learning method is by the name of ‘Pex4Fun’ by Tillmann et al. (2013),

which is a massive open online course (MOOC). Similar to ‘Coursemarker’, the

motivation behind the ‘Pex4Fun' platform was due to feedback given to the

students, although the goal was more to do with providing dynamic feedback as

changes are made to the solutions by the students. By iteratively providing

solutions, students work towards an ideal solution provided by the creator of the

question, starting with either a faulty skeleton code or from scratch (Tillmann et al.,

2013). As with the other e-learning approaches, ‘Pex4Fun’ can be scaled up to

many students at the same time. Due to the fact that anyone can create the

questions or ‘coding duels’, the type of questions are quite broad, and more can be

covered (Tillmann et al., 2013). ‘Pex4Fun’ can be incorporated into teaching courses

due to the flexibility of the platform, and the grading criteria can also be adjusted

(Tillmann et al., 2013). For example, ‘Pex4Fun’ has been used for classroom

teaching as well as competitions. Unfortunately, the lack of data from the paper has

meant that there is no way to compare the effectiveness of ‘Pex4Fun’ in comparison

to the other aforementioned teaching methods.

Just like pair programming, one of the consequences of shifting into e-learning is

that less pressure would be applied on the lecturers, which allows the lecturers to

plan other activities for the students; something that ‘Coursemarker’ aimed for, and

31

‘SPOT’ and ‘Pex4Fun’ indirectly accomplished despite having had other aims

(Higgins et al., 2005; El-Zein et al., 2009; Tillmann et al., 2013). What is also agreed

on between the three groups of researchers are the attempts at providing quality

feedback. However, Buyrukoglu et al. (2016) disagreed that fully automated systems

provide high-quality feedback and instead opted for a semi-automatic approach to

allow an increase in efficiency while also providing high-quality comments and

feedback. Although not a full teaching method, Buyrukoglu et al. (2016) devised a

system that allows improvements on assessing code of e-learning approaches by

separating student code submissions into segments and codifying each segment.

Each individual with the same codified segment would achieve the same feedback,

but any segments of code that could not be codified by the system would be

manually marked by the lecturer. From subsequent research, Buyrukoglu et al.

(2019) concluded with the aid of null hypotheses that the semi-automatic approach

is more efficient than the traditional approach of marking.

Overall, the pass rates of e-learning approaches were similar or higher than for the

method described by Vihavainen et al. (2011) in the previous subsection, such as

‘SPOT’ which had a failure rate of 15% compared to an average of 21.75% for the

two courses. What is also observed is that many of the e-learning approaches

described in the current section also have elements from other categories such as

exams or projects. Furthermore, the years of publication of the numerous studies

analysed in the current section imply that the e-learning approach of teaching is

mature.

32

3.3.3 Projects

Another proposed teaching method is to let the students form groups and work

together to accomplish a project (Ortiz et al., 2017).

Cyr et al. (1997) suggested combining both LEGO® bricks and LabVIEWTM software

to generate engineering-related experiments. The main reason for the research was

to find a low-cost method of teaching engineering concepts such that many schools

and universities would be able to replicate such a method. Despite having similar

proportions of lectures and laboratory session times as the traditional method, the

method by Cyr et al. (1997) is highly focused on the physical electronics

components of LEGO bricks and data acquisition, and a final group project is also

required based on a given theme. In a subsequent paper, the authors also proposed

the use of RoboLab which does not require LabVIEW software in order to lower the

cost of the teaching method (Erwin et al., 2000). Although a number of success

stories were supplied by the study for primary, secondary, and university level

students, there were no statistics to suggest that the proposed method is an

improvement on the traditional method of teaching.

In 2011, Esteves et al. investigated the use of Second Life® virtual world to teach

students programming. Projects were worked on by pairs and the teaching staff

would attend a weekly two-hour meeting in the software with the groups and a

face-to-face meeting every month to guide the students. Whilst the study did not

provide sufficient evidence that the method is an improvement on the traditional

method, conclusions drawn by Esteves et al. (2011) regarding communication

issues may be used to improve e-learning approaches of teaching.

Also in 2011, Sun and Sun experimented with a modular programming method,

involving splitting a complex project into smaller segments that students work on

33

every week; the idea behind the approach is that engineering students do not have

much experience in programming prior to the course and so students needed to be

eased into the subject. Similar to the previous two studies, although the study

reported that the score increased by 30%, the number of participants was not

disclosed and there is insufficient evidence to believe that the method is an

improvement from the traditional approach.

With the goals of maintaining motivation, decreasing the fail rate of the students,

and increasing the efficiency of the teaching process, Ortiz et al. (2017) devised a

group project centred around robots, where the students were placed into groups of

four and had to build and program a robot based on a set of criteria including speed

and movement control, obstacle detection and route tracking utilising a list of

predefined components. For comparison, the study separated a group of students

into two; one of which became the control group which was exposed to the

traditional method of teaching and the other became the experimental group with

the robots (Ortiz et al., 2017). The study concluded that whist all the students had

similar programming skills prior to the course, a null hypothesis was conducted

which proved that the students from the experimental group had a much higher

mark; the average marks for each of the given six exercises were at least 7 marks

greater for the experimental group than the control group, with the gap increasing

as further exercises were supplied (see Table 5). Furthermore, the questionnaire

completed by students revealed that the motivation of students was maintained,

completing the majority of the aims that the study initially set (Ortiz et al., 2017). Due

to the employment of t-test for null hypothesis and control groups, the argument

that the proposed teaching method is an improvement from the traditional teaching

34

method is strong, but the group of participants, which were 60 students, are smaller

than some of the aforementioned studies (Ortiz et al., 2017).

In a bid to improve the teaching of programming concepts to students, Tsai (2019)

experimented with visual programming languages (VPL) for university students since

VPL removed certain barriers such as syntax errors, which made VPL attractive to

secondary school programming teachers. 180 students participated in the study

with 84 students being the control group and learning programming through the

traditional approach described by Blumenstein (2002). Students of the experimental

group began by learning basic programming concepts on App Inventor 2 (AI2) for

the first two-thirds of the course; the students were then allowed to choose a

project to complete based on the preference of the students (Tsai, 2019). Based on

the ANCOVA tests conducted by the researcher, there were significant differences in

the mean marks achieved by the experimental group in comparison to the control

group, meaning that utilising visual programming languages had a positive impact

on learning programming concepts. Since Guo (2018) suggested visual learning to

combat the language barrier that non-native English speakers have, the method by

Tsai (2019) would be a suitable approach of combating such a barrier.

35

Table 5: Average results of each exercise in the robot group project (source: Ortiz et al., 2017)

3.3.4 Competitions

Alike Cyr et al. (1997), Wang (2001) evaluated the use of LEGO bricks and LabVIEW

software, where the course was more focused on a “hands-on” approach of

teaching than the traditional method and so there were no final examinations (Wang,

2001). With elements of pair programming, the students needed to complete

‘approximately 10 LEGO based assignments of increasing difficulty’ throughout the

semester, with an added twist and emphasis on creative solutions to stimulate

competition between teams (Wang, 2001). From the journal, the year the method for

programming was introduced caused a dip in the success rate of the students in the

course. However, the success rate increased back to levels before the reform after

one year, and the dropout rate of students also steadily decreased (Wang, 2001).

3.3.5 Puzzles

Another branch of research into teaching programming is puzzles; the focus of

these types of research are usually for increasing the motivation of the students

(Parsons and Haden, 2006; Merrick, 2010).

Termed 'Parson’s Programming Puzzles’ (PPP), the tool created by Parsons and

Haden (2006) used only drag-and-drop puzzles to teach students programming.

According to the study, lines of code were mixed in with incorrect statements and

the job of the students was to rearrange the lines of code to form a program based

on the given specification (see Figure 3). Furthermore, the study stated that the tool

is an automated tool, so the property of allowing instant feedback by e-learning

tools is also shared by the ‘PPP’. 82% of the students agreed that the tool was

useful as a learning and revision tool; however, the high percentage of satisfaction

36

with the proposed tool is due to the low number of participants of the study, which

consisted of 17 people (Parsons and Haden, 2006). In addition, the fact that the tool

only consists of one type of puzzles suggests the tool is somewhat limited in

usefulness and could be improved on by expanding the types of puzzles available,

of which the viewpoints are shared by 5 of the 17 students (Parsons and Haden,

2006).

In order to increase the problem-solving skills of engineering students, Merrick

(2010) also suggested a puzzle-based approach to teaching. The approach simply

involved the traditional approach with a twist of having all the examples be puzzle-

related. To ensure motivation for the course, students were also required to solve a

puzzle chosen by the student; the code used to solve the puzzle must satisfy

certain conditions dictated by the marking scheme (Merrick, 2010). Based on the

results given by Merrick (2010), the adoption of the method had an all-around

37

Figure 3: An example puzzle of the ‘PPP’ software (Source: Parsons and Haden, 2006)

positive effect according to the students in comparison to the traditional method,

though the results were only gathered for one year after the method had been

adopted and so the results may have occurred by chance.

Unlike any of the previous studies, Figueiredo and García-Peñalvo (2019) proposed

the use of several activities to increase the computational thinking of students. For

example, the research involved origami and punched hole activities (see Figure 4),

where the student had to identify the shape of the unfolded piece of paper after the

paper has been folded in various ways and hole-punched. Besides that, students

were given and were asked to give numerous random instructions in order to

improve reasoning abilities, as well as map design activities in order to increase the

planning skills of the students (Figueiredo and García-Peñalvo, 2019). Though the

number of participants was small for the study at 49 people, the preliminary results

indicated that the ‘Follow and Give Instructions’ activities have a strong correlation

with success in the programming course (Figueiredo and García-Peñalvo, 2019).

An alternative method by López-Pernas et al. (2019) consisted of a programming

escape room in order to boost motivation and decrease the failure rate. The escape

room included a “bomb” that all the participating students had to defuse, using a

program written by the coordinators of the course; the program contained a number

of bugs that the students had to debug, and a series of logical tasks were needed

to obtain the correct commands for using the program (López-Pernas, 2019). Of the

124 students who participated, 84 students gave a mean score of 4.2 out of 5 when

38

Figure 4: An example of the punched hole exercise (Source: Figueiredo and García-Peñalvo, 2019)

asked if the escape room was fun, which suggested that the activity was motivating

(López-Pernas, 2019). However, 82 of the students gave a mean score of 3.4 when

asked if the activity improved knowledge of the content of the course, which

suggests that although the escape room was motivating, utilising the activity as a

method of teaching programming is unsuitable (López-Pernas, 2019).

3.4 Secondary School Level Teaching Method

3.4.1 Modifications to Traditional Method

In 2019, a study by Sentance et al. described the use of the ‘PRIMM’ approach in

order to teach secondary school students programming, with the research taking

place due to wanting to find a method that could alleviate some of the identified

problems of learning programming. Just like McDowell et al. (2002) and Nagappan

et al. (2003), pair programming was identified as important and was incorporated

into the method; for the students, the method involved having to predict what an

existing piece of code does, followed by a demonstration by the teacher. Analysis of

the code would then be carried out, followed by the students modifying the code for

different given exercises (Sentance et al., 2019); at the end, students were told to

use the same structure and create an entirely different piece of code. Utilising such

a method would allow the students to build up confidence and skill (Lee et al.,

2011). Using one group of students as the experimental group and another as the

control group in a 673 student study, Sentance et al. (2019) concluded with the aid

of the Mann-Whitney U test that the ‘PRIMM’ method had an undeniable positive

effect on the scores, and the responses received from teachers were positive.

39

3.4.2 Scratch

One of the more popular teaching methods of programming among secondary

school teachers is the use of Scratch, evident by the numerous research journals on

the topic.

For Coravu et al. (2015), the main focus for the research was to observe how useful

Scratch as a tool would be for teaching programming since visual programming

languages such as Scratch allows students to bypass having to learn the syntax

and is easier to debug. Coravu et al. (2015) also identified that Scratch allow

students to develop creative thinking skills and is considered enjoyable. Separating

210 students into two equal groups with one learning programming concepts from

Scratch and another from C, the study concluded that students who learnt the

topics on Scratch obtained better results and motivation than the other group,

though due to the lack of statistics the results cannot be verified. However, a

separate study by Yildiz Durak (2018) supported the use of Scratch for teaching

programming after conducting an experiment with 62 secondary school students.

With the aim of effectively teaching programming concepts, Yildiz Durak (2018)

separated the students into two groups with one group learning programming via

the conventional method and another group being taught via a digital story project;

the students were asked to create a digital story entirely from scratch on Scratch,

including the storyboard, vocals, and images. A pretest was conducted by the

researcher beforehand to ensure that both of the groups were at the same level in

terms of programming achievements (see Table 6). With a mean score of 81.56 for

the group who learnt programming via the digital story approach and 73.17 for the

conventional approach, Yildiz Durak (2018) performed ANCOVA tests and found that

there were significant differences in the participation levels, the learning of the

40

concepts, and the grades given to the students, all favouring the digital story

approach. Although no indication was given for how many students received subpar

grades, increasing in the participation levels suggests that there was an increase in

motivation in learning programming, which is considered to be a major barrier in

many of the aforementioned studies. Two problems can be observed from the

study: similar to the study conducted by Ortiz et al. (2017), the low number of

participants in the study compared to some of the others mentioned suggests that

the results can still vary, and further research would have to be carried out.

Moreover, whilst the participants were secondary school students, the participants

were of the younger years of secondary school, meaning that the comparison of the

success rates of the study conducted by Yildiz Durak (2018) with the other

aforementioned methods may be unfair, as the concepts that students had to learn

whilst using the other teaching methods may have been more advanced.

Another study relating to Scratch was done by Hermans and Aivaloglou (2017), who

decided to combine Scratch and MOOC, which is a model similar to ‘Pex4Fun’ by

Tillmann et al. (2013). According to the study, materials such as ‘videos, quizzes and

forum interactions’ were provided, and the students had to program a game each

week, assessed with 2 exams over the duration of the course. Due to the nature of

MOOC, of the 2220 students who used the method, only 181 completed the course

(Hermans and Aivaloglou, 2017); the fact that the course is a MOOC also meant the

41

Table 6: Mean programming achievements before and after the experiment (source: Yildiz Durak,

2018)

data cannot be compared with the other courses described here. What is of interest

however is that the mean grades of students who did answers questions had the

lowest for programming concepts questions such as the use of comparison

operators with 0.63 and the second-highest for debugging questions with a value of

0.85 out of 1, which supported the argument by Coravu et al. (2015) that Scratch

allows student ease into the idea of debugging (Hermans and Aivaloglou, 2017). 

42

4. Results and Discussion

Using the methodology detailed in section 2.2, a survey (see Appendix B) was sent

out electronically to secondary school programming teachers across England and

Wales, of which 15 responded. For Figures 5, 6, and 9, the Likert scale associated

begins with strongly agree (1) to strongly disagree (5). For Figure 8, the scale begins

with very easy (1) to very difficult (5).

For question 1 (see Figure 5) there was an overwhelmingly positive response

regarding the usefulness of programming as a skill in general where only one

teacher responded in the negative, with a mean value of 1.87 using the Likert scale

score. The purpose of this question was to see if teachers of programming would

consider what is being taught useful; teachers who do not consider what is being

taught to be useful would be less motivated to teach the subject, which would

become a barrier for the students to learn to program. Without having such

motivation and passion, teaching students would be more akin to ‘enforcement and

43

Fr
eq

ue
nc

y

0

1

2

3

4

5

6

Likert Scale Score

1 2 3 4 5

Figure 5: “Programming skills are important to have in

general, regardless of profession”

obedience’ according to Fried (1995, cited in Day, 2004). From the results gathered,

the implication is that the lack of passion by teachers is not a barrier to learning

programming. On the other hand, the fact that all the teachers who participated in

the survey are programming teachers may have skewed the results more toward the

positive than if the teachers were from all different kinds of disciplines.

The next question asked was the importance of programming according to the

teachers (see Figure 6). Again, the results were overwhelmingly positive, with only

one teacher who believed programming is not important to engineers, resulting in a

mean value of 1.67. This is in agreement with Sun and Sun (2011) and Nikolic et al.

(2018) who stated that programming is essential for engineers. The reasoning

behind question 2 was if teachers disagreed that engineers require programming

skills, teachers would not recommend learning programming to any students

aspiring to become engineers, instead steering the students to more traditional

subjects such as mathematics and physics. The resulting effect would be a barrier

to learning to program as the students would not consider the skill to be important

44

Fr
eq

ue
nc

y

0

1

2

3

4

5

6

7

8

9

Likert Scale Score

1 2 3 4 5

Figure 6: “Programming skills are integral to engineers”

for an engineering role. Similar to question 1, having only programming teachers fill

the survey may have caused a bias towards the positive side of the scale.

Additionally, one of the participants pointed out that different types of engineering

may cause the answers to be different, which was not specified within the question.

All the responses for question 3 can be viewed in Appendix C. The main responses

by the participants for this question relate learning programming to learning

problem-solving skills, one that is widely known as being vital to mechanical

engineers. Several responses also noted the usefulness of programming for

mechanical engineers due to the large use of models and simulations, many of

which would benefit if the user understands programming techniques. One

particular response mentioned that learning such a skill would potentially open up

new job prospects for the student. To combat the lack of motivation in learning

programming, which has been identified frequently in section 3, one may potentially

use these answers as incentives.

45

No
67%

Yes
33%

Figure 7: “Would you consider the students to be well-informed about what engineering

entails when considering their future career options?”

Figure 7 displays the results for question 4. The reasoning for the question is

because the lack of knowledge of what engineering is may cause some students to

not consider the subject as a possible future career despite having an interest in the

field, which would be a barrier to engineering, and a barrier to engineering

programming. Similar to the reasoning for question 2, students who are interested in

engineering but not well-informed would not know that programming is important to

engineers (Sun and Sun, 2011; Nikolic et al., 2018). When asked if the students

know what engineering entails, 67% of teachers reported that the students do not

know. This is in agreement with the study by Hirsch et al. (2007) which revealed that

62% of secondary school students did not know what the work for any type of

engineering consists of despite the vast majority of students claiming beforehand

that the student understood what engineers do. This suggests that despite only

having teachers respond to the survey, the data gathered is likely more accurate

than if only students responded to the survey as the teachers can predict what the

students know and do not know better compared to the students themselves.

Question 5 (see Appendix C) was asked in order to identify possible barriers that

students may have and is worded in such a way in order to not restrict the answers

participants give. The aforementioned barriers such as low confidence from Lui et

al. (2004) and lack of motivation were mentioned by several participants. In addition,

a lack of interest in programming was also flagged as a barrier, which can be

attributed to the subject being poorly taught previously or the lack of role models to

look up to due to programming being a relatively new field. Some of the other

possible barriers include the regarded difficulty of the subject and the lack of

awareness.

46

The results for question 6a are displayed in Figure 8. The purpose of question 6a

was to find the most pressing barriers from the given examples. From left to right of

the figure, the mean values for each of the examples are 2.80, 2.73, 2.53, 3.27, 3.13,

3.00, and 3.40 respectively. Comparing the mean values, the biggest barrier

according to the participants is code debugging followed by understanding the

concepts and syntax, whilst the easiest is finding the method to write programs

followed by finding where to begin the programming process. The results shown in

Figure 8 are in agreement with Coravu et al. (2015) and Sentance et al. (2019), who

both stated that learning syntax is one of the bigger barriers to learning

programming. Surprisingly, the mean values show that attempting to find the

motivation to learn programming is considered to be somewhat easy according to

the participants despite being one of the major focuses when attempting to find a

more successful teaching method. When converted to a 7-point Likert scale from

47

Fr
eq

ue
nc

y

0

1

2

3

4

5

6

7

Fin
ding

 m
oti

va
tio

n

Whe
re

to
beg

in

Fin
ding

 th
e m

eth
od

s

Th
e c

on
ce

pts

Th
e s

yn
tax

Cod
e t

es
tin

g

Deb
ug

gin
g

1 (Very easy) 2 (Easy) 3 (Average) 4 (Difficult) 5 (Very difficult)

Figure 8: Whether teachers believe the given aspects are difficult for students

the 5-point scale, the mean values for the syntax data and the debugging data

become 4.20 and 4.60 respectively (Lewis and Sauro, 2020). Both sets of data then

underwent the Kolmogorov-Smirnov test with p-values of 0.19298 and 0.16968

respectively, indicating that the data sets are sufficiently normally distributed (Kent

State University, 2021; Stangroom, 2021); this was to ensure that a t-test could be

performed on the data alongside the data gathered by Piteira and Costa (2013) to

see if the barriers are similar for different countries. The t-values (see Appendix C)

for the syntax and debugging sets of data were found to be 1.95 and 1.68

respectively (Kent State University, 2021). Since the syntax data set has a p-value of

1.725, the null hypothesis (see Appendix C) was rejected, meaning the mean values

were not the same. On the other hand, the p-value for the debugging set of data

1.714 which means the hypothesis was not rejected. Since the mean values were

likely not the same for the syntax data set, the implication is that the

aforementioned barrier is prioritised differently for professionals in different

countries; a problem may arise where research into the particular barrier is done at

an inconsistent rate or is simply neglected by the professionals of particular

countries. Whilst the null hypothesis of the debugging data set was not rejected,

indicating a possibility that no relationship exists, the null hypothesis also implies

that greater sample size is required.

Similar to question 5, question 6b was designed to identify possible barriers but

was more orientated towards ones that students encounter during the process of

learning. Several of the barriers in question 5 were reiterated in question 6b (see

Appendix C). Nevertheless, the one which stood out was the difficulty in using

pseudocode, whose main purpose when used correctly is to assist in planning and

visualising programs. Social aspects were also flagged as barriers, including access

48

to equipment and resources, especially for secondary schools with less funding or

students who are disadvantaged, as well as gender and racial stereotypes; a limited

amount of research has been done to minimise the social problems, such as by

Kamin (2007), though more research would need to be conducted in the field. A

potential barrier that a participant identified is that some educators would focus on

how to use functions in particular programming languages as opposed to the

general concepts of programming.

For question 7a, participants were introduced to four teaching methods from

section 3 and were asked if the teaching methods would be effective based on

experience (see Figure 9). From left to right, the mean values based on the Likert

scale were: 4.40, 2.53, 2.27, and 2.13. Unsurprisingly, the vast majority of

participants believed that simply learning the theory is not a good strategy for

teaching programming, which is a teaching method used to teach more traditional

courses. Project and theory are akin to the traditional method described by

49

Fr
eq

ue
nc

y

0

3

6

9

12

Theory Only Project Only Project and Theory Competition

1 (Strongly Agree) 2 (Agree) 3 (Don’t know) 4 (Disagree) 5 (Strongly Disagree)

Figure 9: Whether teachers agree that the given method should be used to

teach programming

Blumenstein (2002) in section 3.2, and project only is based on the methods in

section 3.3.3. Interestingly, based on the mean values of the two, participants of the

survey believe that project and theory is a more suitable method of teaching

programming, whilst researchers from section 3.3.3 such as Ortiz et al. (2017) found

evidence that project-based teaching methods are better than the traditional

method; one of the implications is that teachers are unable to catch up with current

research. Alternatively, the observation suggests that secondary school teachers are

unaware of the research since the targets for the journals are students at university

rather than for primary or secondary school students. The lowest mean value for the

data sets in Figure 9 was for competitions, which according to Wang (2001) was a

method capable of decreasing the dropout rate while also maintaining the success

rate, hence a safe strategy to use.

Finally, question 7b was asked to allow participants to introduce teaching methods

that teachers may consider to be successful when it came to teaching

programming. Some suggestions by participants include the use of physical devices

such as Raspberry Pi, Edbot, and drones at a young age to increase relevance and

allow students to physically see the results when the code is complete. One

particular response suggested the use of unplugged activities similar to the method

of Figueiredo and García-Peñalvo (2019). Another response suggested the use of

simple programs that students can edit; students would need to know how each of

the functions works before any improvements can be made. Several of the

responses given were more towards improving the motivation and interest in the

students and can be viewed in Appendix C.

Overall, what has been discovered is that programming is considered to be an

important skill to have, though not necessarily a skill that students are aware of that

50

engineers need. The t-test is evidence of the fact that although barriers may be

similar for different countries, the order of priority when attempting to solve the

problem is different for different countries, and some barriers may simply be

regarded as not sufficiently important to be looked into. Some of the barriers that

have been identified through the survey include code debugging, learning the

syntax, use of pseudocode, access to equipment and facilities, racism, and sexism.

For code debugging, analysis of the research from section 3.4.2 had indicated that

visual programming languages have the ability to ease students into the topic. In

terms of teaching methods, competitions have been identified as the preferred

method of programming teaching by the participants out of four of the more

common methods of teaching, with project-based teaching using physical devices

also being a popular option.

In the study, a number of limitations were identified. Firstly, the lack of participants

for the survey has meant that the sample is less likely to represent the thoughts of

the population. In addition, the participants being programming teachers in

secondary schools has meant that the participants may have been biased when

attempting to answer questions 1 and 2. As identified by one of the participants,

had the question been worded slightly differently for question 2, the answers would

likely have been different as well.

5. Cheatsheets and Software

In line with the second aim set out at the start of the project, cheatsheets and

software were generated and designed to assist students in learning how to

program.

51

The software is programmed in Python and was inspired by the e-learning

approaches evaluated in section 3.3.2, particularly ‘SPOT’ and ‘PIT’ where a broad

range of questions was made and students can attempt a randomised question

every time. E-learning approaches are also currently one of the more mature

methods of teaching programming, evident by the number of studies conducted in

the field compared to the other methods mentioned. As shown below, programming

exercises designed to combat the more pressing barriers identified in question 6a of

the survey were created.

5.1 Cheatsheets

Since syntax was a major barrier according to results from the survey, cheatsheets

were created to assist the students when programming, where the students can

quickly check the syntax as well as check the purpose of some of the common

functions used in a program. Two cheatsheets were created; one for Python and

one for MATLAB (see Appendix D). Common variables of the programming

languages are introduced at the top of the cheatsheets, followed by quick

definitions of the listed common functions as well as syntax and parameters. Under

the list of functions are extra pieces of information that students should be informed

about prior to using the functions. Finally, references to notes and books that the

cheatsheets were adapted from were included at the bottom of the cheatsheets so

that students may do some further reading if interested.

5.2 MATLAB Engine API

To write the code for the software, research into Python was needed in order to find

suitable functions such as Threading, Time and Random modules (Python Software

52

Foundation, 2021a; 2021b; 2021c); how the modules were used can be seen in

Appendix F. An API by the name of MATLAB Engine was utilised in order to allow

the execution of MATLAB functions in Python (Mathworks Inc., 2021). The use of the

API allowed the software to evaluate answers given in both Python and MATLAB

code, increasing the flexibility for teachers who use the software and allows the

teachers to focus more on the concepts of programming rather than on any

particular programming language, which was suggested as a barrier by a participant

of the survey.

5.3 Software

The software program for the project is named Automatic Revision Tool (ART) and

can be accessed by the command-line interface, which outputs the main menu (see

Figure 10 and Appendix E for code). From the main menu, a number of programmed

exercises can be accessed for revision via inputting the number associated. The

code for each of the exercises is stored in a module by the name Questions.py (see

Appendix F).

The first two options on the main menu access an exercise that requires the user to

input a line of code, one for Python and one for MATLAB. The purpose of the

exercise is to assist the students in remembering the syntax of programming

53

Figure 10: The main menu of ART displayed on the command-line interface

languages, which was found to be a major barrier to learning programming in the

survey. The program reads a text file with an incomplete pre-written set of code, the

numerical answer if the code was executed with the correct statements, and the line

that needs to be filled by the user; an example of which is given in Appendix G. The

software outputs a description of what the exercise entails as well as the incomplete

set of code with its specification (see Figure 11). As an example, a question about

the conservation of momentum is given as mechanics is a relevant topic of both

mechanical engineering and A-Level Further Mathematics (WJEC, 2019d).

54
Figure 11: The command-line interface after choosing option 1 (Fill In the Gap)

A prompt would appear for when the line of code needs to be entered, and the

software automatically injects the line of code provided by the user into the

incomplete set of code; once completed ART attempts to execute the code and

retrieve a numerical value, which is then compared to the aforementioned numerical

answer. If the numerical value was equal, then a message would appear to

congratulate the user and terminate the software (see Figure 12a). Conversely, if the

answer was incorrect then a message would appear to clarify the problem

encountered when attempting to execute the code and compare the expected

answer with the actual answer; the program would then prompt the user to try again

(see Figure 12b).

One of the special features of Fill In the Gap and Fill In the Gap (MATLAB) is that

with different text files, teachers can add different questions as long as the text files

adhere to a certain syntax, allowing flexibility for the teachers (see Appendix G).

For option 3 from the main menu (see Figure 10), a similar process to options 1 and

2 occur, where the software reads a text file and displays on the command-line

prompt the description of the exercise as well as the piece of code that the exercise

would use. Nevertheless, the main difference of option 3 is that the piece of code

which is displayed on the command-line prompt is faulty and does not run, and was

55

Figures 12a (top), 12b (bottom): The command-line interface after entering the correct line of code

(top) and after entering an incorrect line of code (bottom) for Fill In the Gap exercise

designed as a result of identifying debugging as one of the biggest barriers to

learning programming. Instead, the software requires the user to edit the piece of

code on a separate text editor until all the errors and exceptions are fixed. Once the

piece of code runs, an integer will be given which the user enters into the

command-line prompt of the software; if the answer is correct, a message of

congratulation would appear. Otherwise, the software would prompt the user to try

again and enter a different value (see Figure 13).

A separate function was not required for the MATLAB version of the exercise since

similar to Fill In the Gap exercises, different text files with different programming

languages can be used as long as the syntax is adhered to, which is similar to the

syntax shown in Appendix G though without the “>gap<“ line of code.

56

Figure 13: The command-line interface after entering an incorrect followed by a correct numerical

answer for the Correct the Error exercise

Figure 14: The descriptions for both of the Program Writing exercises

Finally, choosing options 4 and 5 shown in the main menu (see Figure 10) causes

the software to display a description of the exercise, both of which are displayed in

Figure 14; the descriptions were specifically chosen due to the relevance of the

problems to both mechanical engineering and A-Level Mathematics and Further

Mathematics. In addition, choosing a topic that is related to mechanical engineering

may inspire passion in programming as long as the student is interested in the

subject (WJEC, 2019d; 2019e).

The software requires the user to work out and write a script that solves the

problem, assisting in overcoming the vast majority of the barriers described by

question 6a of the survey. For each of the exercise, 9 values which are determined

dynamically would be outputted by the software, and in both instances, the script

written by the user must be able to take in all the values given and calculate all

possible values of the acceleration. Once the allocated time has elapsed, 3

questions based on random combinations of the 9 values would be asked, and the

user must answer all 3 of the questions in order for the software to mark the scores.

Otherwise, the software would abort after the 15 seconds have elapsed (see Figure

15a). Should any of the answers be incorrect, the software would output the correct

answers so that the user can review and debug the script (see Figure 15b). If the

answers were all correct then a message of congratulation would be printed on the

command-line interface (see Figure 15c).

To ensure that the Program Writing exercises were independent of programming

languages, the answers calculated by the software rounds to the nearest two

decimal places to make sure that other programming languages with less accurate

mathematical functions can still utilise the software.

57

The software was tested for bugs using a series of test data, and the resulting

outcome was noted and can be viewed in Appendix H; The test data was designed

to test all the error cases in the code as well as undesired inputs. Several bugs were

identified as a result. Examples include:

• The software not comparing numerical values and subsequently crashes

• Inputting values at particular points during the Program Writing exercise causes

the software to bypass the questions being asked

• Index issues as MATLAB begin an index with the numerical value 1, whereas

Python begins an index with 0

• Functions causing the type of the variables to change

Once the bugs were identified, fixes were made immediately.

58

Figures 15a (top), 15b (centre) and 15c (bottom): Command-line interface if the answers were not

provided (top), incorrect (centre) and correct (bottom) for the Program Writing exercise

6. Conclusions

As stated in the introduction, the purpose of the study was to identify successful

teaching methods and barriers that students of programming may face, particularly

for secondary school engineering students. Based on the pedagogical literature

analysed in the literature review as well as the data found from the various

examination boards in the UK, the biggest problem that is observed is the high rates

of dropout and failure (Vihavainen et al., 2011; Elnagar and Ali, 2012). Further

analysis of the problem revealed that motivation is a significant factor for the

students when deciding whether to drop out (Yacob and Saman, 2012). Barriers

such as a lack of problem-solving skills, which was further reinforced by the survey,

all contribute to the problem (Merrick, 2010; Yacob and Saman, 2012). Other results

from the survey implied that the lack of motivation could be due to the lack of role

models as well as a lack of interest in the topic. As well, the lack of knowledge that

programming is necessary for mechanical engineers serves as a barrier. Social

aspects such as economic, racial, and gender stereotypes have also been flagged

up as barriers to learning programming. The most pressing barriers according to the

survey are debugging, followed by learning the concepts and syntax.

With the disparity between the research into university level and secondary school

level teaching methods, there is a clear knowledge gap in suitable teaching

methods for secondary school students, particularly for engineering students, which

shows that further research into the field is required. The literature review and

survey conducted for the study is evidence that traditional approaches are not

suitable for future teaching of programming (Vihavainen et al., 2011). Additionally, e-

learning, according to the literature review, is considered to be one of the better

methods of teaching for university-level students. Therefore, there was an attempt

59

at creating an e-learning software for secondary school students by the author. In

terms of the survey, the participants agreed that a competition-based teaching

method should be used to teach programming.

As discussed in section 5.2, the deployment of MATLAB was done via an API by the

name of MATLAB Engine. Threading, Time and Random modules were used to

program the software (see Appendix F), and three main exercises with variations

were coded to tackle barriers such as debugging, syntax problems, concepts

problems, and a lack of interest; to garner interest in programming for secondary

school students interested in engineering, the problems were placed in a

mechanical engineering context, and the questions were based on A-Level

problems. The software has also been tested by a series of test data (see Appendix

H) in order to root out the bugs. To assist the secondary school students with the

exercises, cheatsheets have also been designed (see Appendix D).

For the first aim, the first objective was completed entirely since a questionnaire

was created (see Appendix B), distributed and analysed by teachers from

secondary schools, and the responses allowed the author to identify certain barriers

that would have otherwise been left out. The survey also had a section dedicated to

the methods of teaching programming as well. For the second aim, however, whilst

a number of pedagogical literature have been studied and critically evaluated (see

section 3), the variety of teaching methods was not large, and several academic

journals were not evaluated.

For the second aim, learning all of Python and all of its API would require a much

larger timeframe than given for the Individual Project, and hence only a fraction of

the first objective was properly carried out. In terms of the second objective,

exercises on oversights such as syntax, error checking, and correct application of

60

concepts were included in the software, and so the objective was fulfilled; since the

software was programmed using Python, had the capability to call MATLAB and had

questions based on the A-Level specification for mathematics, which contains

mechanics, the third objective fulfilled (WJEC, 2019d; 2019e). However, the software

did not contain any questions regarding the GCSE specification and was therefore

partially fulfilled. In terms of the final two objectives of the second aim, the

cheatsheets have been designed in full and can be observed in Appendix D, while

the test data along with the outcomes can be observed in Appendix H, hence both

of the objectives were fully fulfilled.

In terms of identifying barriers that secondary school students have to face and

successful teaching methods that should be used for teaching programming, the

immediate impact of the project is not large. However, the long-term impact for the

project would become more obvious as time moves on due to the fact that the

project raises awareness of the barriers that currently plague secondary school

programming students. As a result of the project, more researchers would begin

research on the aforementioned barriers as well as teaching methods that would be

able to bypass the problems which have been identified.

6.1 Limitations

Although a few limitations have already been discussed in the previous sections, not

all of the flaws of the project have been discussed. To begin, the data from a few of

the literature may no longer be accurate due to how old the studies were on a topic

that is considered to be relatively new, including the study whose data was used to

conduct the t-test. Also, many of the studies discussed researched into successful

teaching methods of computer science rather than programming, which is much

61

broader and encompasses content that is irrelevant to programming. Merely a

fraction of all the research on the topic is included in the literature review, hence

there is a slim chance that other learning approaches such as competitions and

puzzles are more widespread than e-learning.

As identified at the end of section 4, the low number of participants has meant that

the results are less likely to be repeatable than if the number of participants was

greater. Furthermore, the participants being programming teachers have meant that

the data may be skewed towards a particular direction than if the participants were

teachers of different disciplines. Also as mentioned in section 4, some of the

questions for the survey were ambiguous to the point where a participant made a

comment.

For the software, common oversights such as index being out of bounds are caught

by the software, but the feedback given by the software is vague, which is

unsuitable for revision; the software is merely a prototype and therefore has several

flaws, including that the software has security flaws when using the exec function,

which can potentially delete all files of a computer if abused by the user (Programiz,

2021). From a different perspective, the types of exercises and questions currently

available are somewhat limited and so the impact that the current iteration of the

software has on overcoming the identified barriers is weak. Lastly, the software has

yet to be tested by end-users such as teachers or students.

6.2 Future Work

Further research will need to be carried out on some of the identified barriers such

as racial and gender stereotypes in order to find methods that could minimise the

impact.

62

Even though the software is currently considered weak for overcoming barriers, the

code that has already been written serves as a foundation for something which can

easily be used by secondary school teachers and students. Nevertheless, the

software in the current form would need to be tested by secondary school students

to ensure that the software is appropriate and can be used in revision, which can be

done. In order to make the software more accessible to people who have no

experience with programming, the main menu should be converted into a GUI via

the use of frameworks. Additionally, the cheatsheets in Appendix D should be

incorporated into the software as one of the options to choose from in the main

menu so that easy access by the students is possible. According to section 6.1,

improvements on the software can also be made by upping the number of

questions that can be asked by the software by taking advantage of the versatility of

the text file reading as well as increasing the types of exercises available to better

combat the barriers associated with learning programming. Akin to ‘Coursemarker’,

‘PIT’ and ‘SPOT’ mentioned in section 3.3.2, more tools geared towards in-person

classes may alleviate problems the teacher has, who can then plan activities

designed to overcome barriers that the particular class is prone to have (Higgins et

al., 2005; El-Zein et al., 2009; Rehberger et al., 2013). An example would be online

and competition features due to the results from the survey suggesting

competitions as a possibly good method of teaching; each person in a class has to

write and submit a script for a particular problem to the software; furthermore, each

student has to provide an input which the student believes would crash the script of

other students in the class, allowing the teacher to score the scripts based on

whether the script of the student solves the problem and whether the script is

robustness.

63

7. References

AQA (2019a). AS and A-Level Computer Science. Available at: https://

filestore.aqa.org.uk/resources/computing/specifications/AQA-7516-7517-

SP-2015.PDF (Accessed: 20/4/21).

AQA (2019b). Exam results statistics - June 2019. Available at: https://

filestore.aqa.org.uk/over/stat_pdf/AQA-GCSE-STATS-JUN-2019.PDF (Accessed:

20/4/21).

AQA (2020). GCSE Computer Science. Available at: https://filestore.aqa.org.uk/

resources/computing/specifications/AQA-8520-SP-2016.PDF (Accessed: 20/4/21).

AQA (2021). Teaching Resources. Available at: https://www.aqa.org.uk/subjects/

computer-science-and-it/gcse/computer-science-8520/teaching-resources

(Accessed: 20/3/21).

Azemi, A. and Pauley, L. L. (2008). ‘Teaching the introductory computer

programming course for engineers using Matlab’. In: 2008 38th Annual Frontiers in

Education Conference, 22-25 Oct. 2008 2008. pp. T3B-1-T3B-23.

BBC (2021a). User interfaces. Available at: https://www.bbc.co.uk/bitesize/guides/

z w b 4 j x s / r e v i s i o n /

1#:~:text=A%20command%2Dline%20interface%20allows,PCs%20used%20com

mand%2Dline%20interfaces. (Accessed: 6/5/21).

BBC (2021b). Development and testing. Available at: https://www.bbc.co.uk/

bitesize/guides/z8n3d2p/revision/7 (Accessed: 8/5/21).

Blumenstein, M. (2002). ‘Strategies for improving a Java-based, first year

programming course’. In: International Conference on Computers in Education,

64

https://filestore.aqa.org.uk/resources/computing/specifications/AQA-7516-7517-SP-2015.PDF
https://filestore.aqa.org.uk/resources/computing/specifications/AQA-7516-7517-SP-2015.PDF
https://filestore.aqa.org.uk/resources/computing/specifications/AQA-7516-7517-SP-2015.PDF
https://filestore.aqa.org.uk/over/stat_pdf/AQA-GCSE-STATS-JUN-2019.PDF
https://filestore.aqa.org.uk/over/stat_pdf/AQA-GCSE-STATS-JUN-2019.PDF
https://filestore.aqa.org.uk/resources/computing/specifications/AQA-8520-SP-2016.PDF
https://filestore.aqa.org.uk/resources/computing/specifications/AQA-8520-SP-2016.PDF
https://filestore.aqa.org.uk/resources/computing/specifications/AQA-8520-SP-2016.PDF
https://www.aqa.org.uk/subjects/computer-science-and-it/gcse/computer-science-8520/teaching-resources
https://www.aqa.org.uk/subjects/computer-science-and-it/gcse/computer-science-8520/teaching-resources
https://www.bbc.co.uk/bitesize/guides/zwb4jxs/revision/1#:~:text=A%20command%2Dline%20interface%20allows,PCs%20used%20command%2Dline%20interfaces
https://www.bbc.co.uk/bitesize/guides/zwb4jxs/revision/1#:~:text=A%20command%2Dline%20interface%20allows,PCs%20used%20command%2Dline%20interfaces
https://www.bbc.co.uk/bitesize/guides/zwb4jxs/revision/1#:~:text=A%20command%2Dline%20interface%20allows,PCs%20used%20command%2Dline%20interfaces
https://www.bbc.co.uk/bitesize/guides/z8n3d2p/revision/7
https://www.bbc.co.uk/bitesize/guides/z8n3d2p/revision/7

2002. Proceedings., 3-6 Dec. 2002 2002. pp. 1095-1099 vol.2 (Accessed:

11/11/20).

Buyrukoglu, S., Batmaz, F. & Lock, R. (2016). ’Semi-Automatic Assessment

Approach to Programming Code for Novice Students', Proceedings of the 8th

International Conference on Computer Supported Education, Rome, Italy:

SCITEPRESS - Science and Technology Publications, Lda, pp. 289–297.

Buyrukoglu, S., Batmaz, F. & Lock, R. (2019). 'Improving marking efficiency for

longer programming solutions based on a semi-automated assessment approach',

Computer Applications in Engineering Education, 27(3), pp. 733-743.

Christensson, P. (2013). Framework Definition. Available at: https://techterms.com

(Accessed: 14/11/20).

Coravu, L., Marian, M. & Ganea, E. (2015). ‘Scratch and recreational coding for

kids’. In: 2015 14th RoEduNet International Conference - Networking in Education

and Research (RoEduNet NER), 24-26 Sept. 2015 2015. pp. 85-89 (Accessed:

11/11/20).

Cyr, M., Miragila, V., Nocera, T. & Rogers, C. (1997). 'A Low Cost, Innovative

Methodology for Teaching Engineering Through Experimentation', Journal of

Engineering Education, 86, pp. 167-171.

Dawson, J. Q., Allen, M., Campbell, A. & Valair, A. (2018). ’Designing an Introductory

Programming Course to Improve Non-Majors' Experiences', Proceedings of the

49th ACM Technical Symposium on Computer Science Education, Baltimore,

Maryland, USA: Association for Computing Machinery, pp. 26–31.

Day, C. (2004). 'A Passion for Teaching', A Passion for Teaching, pp. 1-170.

Department of Education (2013a). National curriculum in England: computing

programmes of study. Available at: https://www.gov.uk/government/publications/

65

https://www.gov.uk/government/publications/national-curriculum-in-england-computing-programmes-of-study/national-curriculum-in-england-computing-programmes-of-study

national-curriculum-in-england-computing-programmes-of-study/national-

curriculum-in-england-computing-programmes-of-study (Accessed: 12/11/20).

Department of Education (2013b). National curriculum in England: design and

technology programmes of study. Available at: https://www.gov.uk/government/

publications/national-curriculum-in-england-design-and-technology-programmes-

of-study/national-curriculum-in-england-design-and-technology-programmes-of-

study (Accessed: 12/11/20).

Elnagar, A., Ali, M. (2012). 'A modified team-based learning methodology for

effective delivery of an introductory programming course', Proceedings of the 13th

annual conference on Information technology education, Calgary, Alberta, Canada:

Association for Computing Machinery, pp. 177–182.

El-Zein, A., Langrish, T. & Balaam, N. (2009). 'Blended Teaching and Learning of

Computer Programming Skills in Engineering Curricula', Advances in Engineering

Education, 1.

Erwin, B., Cyr, M. & Rogers, C. (2000). 'LEGO Engineer and RoboLab: Teaching

Engineering with LabVIEW from Kindergarten to Graduate School', International

Journal of Engineering Education, 16.

Esteves, M., Fonseca, B., Morgado, L. & Martins, P. (2011). 'Improving teaching and

learning of computer programming through the use of the Second Life virtual world',

British Journal of Educational Technology, 42(4), pp. 624-637.

Figueiredo, J., García-Peñalvo, F. J. (2019). ’Teaching and learning strategies of

programming for university courses', Proceedings of the Seventh International

Conference on Technological Ecosystems for Enhancing Multiculturality, León,

Spain: Association for Computing Machinery, pp. 1020–1027.

66

https://www.gov.uk/government/publications/national-curriculum-in-england-computing-programmes-of-study/national-curriculum-in-england-computing-programmes-of-study
https://www.gov.uk/government/publications/national-curriculum-in-england-computing-programmes-of-study/national-curriculum-in-england-computing-programmes-of-study
https://www.gov.uk/government/publications/national-curriculum-in-england-design-and-technology-programmes-of-study/national-curriculum-in-england-design-and-technology-programmes-of-study
https://www.gov.uk/government/publications/national-curriculum-in-england-design-and-technology-programmes-of-study/national-curriculum-in-england-design-and-technology-programmes-of-study
https://www.gov.uk/government/publications/national-curriculum-in-england-design-and-technology-programmes-of-study/national-curriculum-in-england-design-and-technology-programmes-of-study

Gill, G. & Holton, C. F. (2006). 'A Self-Paced Introductory Programming Course',

Journal of Information Technology Education: Research, 5(1), pp. 95-105.

Guo, P. J. (2018). ’Non-Native English Speakers Learning Computer Programming:

Barriers, Desires, and Design Opportunities', Proceedings of the 2018 CHI

Conference on Human Factors in Computing Systems, Montreal QC, Canada:

Association for Computing Machinery, p. Paper 396.

Hermans, F. & Aivaloglou, E. (2017). ‘Teaching Software Engineering Principles to

K-12 Students: A MOOC on Scratch’. In: 2017 IEEE/ACM 39th International

Conference on Software Engineering: Software Engineering Education and Training

Track (ICSE-SEET), 20-28 May 2017 2017. pp. 13-22.

Higgins, C. A., Gray, G., Symeonidis, P. & Tsintsifas, A. (2005). 'Automated

assessment and experiences of teaching programming', J. Educ. Resour. Comput.,

5(3), pp. 5–es.

Hirsch, L. S., Carpinelli, J. D., Kimmel, H., Rockland, R. & Bloom, J. (2007). ‘The

differential effects of pre-engineering curricula on middle School Students’ attitudes

to and knowledge of engineering careers’. In: 2007 37th Annual Frontiers In

Education Conference - Global Engineering: Knowledge Without Borders,

Opportunities Without Passports, 10-13 Oct. 2007 2007. pp. S2B-17-S2B-21

(Accessed: 30/4/21).

Hogle, J. G. (1995). Computer Microworlds in Education [microform] : Catching Up

with Danny Dunn / Jan G. Hogle. [Washington D.C.]: Distributed by ERIC

Clearinghouse.

Jonassen, D., Spector, M. J., Driscoll, M., Merrill, M. D. & van Merrienboer, J. (2008).

Handbook of Research on Educational Communications and Technology: A Project

67

of the Association for Educational Communications and Technology: Taylor &

Francis.

Kent State University (2021). SPSS TUTORIALS: INDEPENDENT SAMPLES T TEST.

Available at: https://libguides.library.kent.edu/SPSS/IndependentTTest (Accessed:

4/5/21).

Lee, I., Martin, F., Denner, J., Coulter, B., Allan, W., Erickson, J., Malyn-Smith, J. &

Werner, L. (2011). 'Computational thinking for youth in practice', ACM Inroads, 2(1),

pp. 32–37.

Lewis, J., Sauro, J (2020). HOW TO CONVERT BETWEEN FIVE- AND SEVEN-

POINT SCALES. Available at: https://measuringu.com/convert-point-scales/

(Accessed: 4/5/21).

López-Pernas, S., Gordillo, A., Barra, E. & Quemada, J. (2019). 'Examining the Use

of an Educational Escape Room for Teaching Programming in a Higher Education

Setting', IEEE Access, 7, pp. 31723-31737.

Lui, A. K., Kwan, R., Poon, M. & Cheung, Y. H. Y. (2004). 'Saving weak programming

students: applying constructivism in a first programming course', SIGCSE Bull.,

36(2), pp. 72–76.

Mathworks Inc. (2021). Install MATLAB Engine API for Python. Available at: https://

uk.mathworks.com/help/matlab/matlab_external/install-the-matlab-engine-for-

python.html (Accessed: 29/4/21).

McDowell, C., Werner, L., Bullock, H. & Fernald, J. (2002). 'The effects of pair-

programming on performance in an introductory programming course', SIGCSE

Bull., 34(1), pp. 38–42.

68

https://libguides.library.kent.edu/SPSS/IndependentTTest
https://measuringu.com/convert-point-scales/
https://uk.mathworks.com/help/matlab/matlab_external/install-the-matlab-engine-for-python.html
https://uk.mathworks.com/help/matlab/matlab_external/install-the-matlab-engine-for-python.html
https://uk.mathworks.com/help/matlab/matlab_external/install-the-matlab-engine-for-python.html

Merrick, K. E. (2010). 'An Empirical Evaluation of Puzzle-Based Learning as an

Interest Approach for Teaching Introductory Computer Science', IEEE Transactions

on Education, 53(4), pp. 677-680.

Mulesoft (2020). What is an API? (Application Programming Interface). Available at:

https://www.mulesoft.com/resources/api/what-is-an-api (Accessed: 14/11/20).

Nagappan, N., Williams, L., Wiebe, E., Miller, C., Balik, S., Ferzli, M. & Petlick, J.

(2003). ‘Pair Learning: With an Eye Toward Future Success’. In: Maurer, F. & Wells,

D., eds. Extreme Programming and Agile Methods - XP/Agile Universe 2003, 2003//

2003 Berlin, Heidelberg. Springer Berlin Heidelberg. pp. 185-198 (Accessed:

30/3/21).

Nikolic, S., Ros, M. & Hastie, D. B. (2018). 'Teaching programming in common first

year engineering: discipline insights applying a flipped learning problem-solving

approach', Australasian Journal of Engineering Education, 23(1), pp. 3-14.

OCR (2019). Final Results Statistics. Available at: https://www.ocr.org.uk/Images/

552371-gcse-cambridge-nationals-and-other-level-2-final-exam-statistics-

june-2019.pdf (Accessed: 20/4/21).

OCR (2020a). GCSE (9-1) Specification Computer Science. Available at: https://

www.ocr.org.uk/Images/225975-specification-accredited-gcse-computer-science-

j276.pdf (Accessed: 20/4/21).

OCR (2020b). AS Level Specification Computer Science. Available at: https://

www.ocr.org.uk/Images/170845-specification-accredited-as-level-gce-computer-

science-h046.pdf (Accessed: 20/4/21).

OCR (2020c). A Level Specification Computer Science. Available at: https://

www.ocr.org.uk/Images/170844-specification-accredited-a-level-gce-computer-

science-h446.pdf (Accessed: 20/4/21).

69

https://www.ocr.org.uk/Images/552371-gcse-cambridge-nationals-and-other-level-2-final-exam-statistics-june-2019.pdf
https://www.ocr.org.uk/Images/552371-gcse-cambridge-nationals-and-other-level-2-final-exam-statistics-june-2019.pdf
https://www.ocr.org.uk/Images/552371-gcse-cambridge-nationals-and-other-level-2-final-exam-statistics-june-2019.pdf
https://www.ocr.org.uk/Images/225975-specification-accredited-gcse-computer-science-j276.pdf
https://www.ocr.org.uk/Images/225975-specification-accredited-gcse-computer-science-j276.pdf
https://www.ocr.org.uk/Images/225975-specification-accredited-gcse-computer-science-j276.pdf
https://www.ocr.org.uk/Images/170845-specification-accredited-as-level-gce-computer-science-h046.pdf
https://www.ocr.org.uk/Images/170845-specification-accredited-as-level-gce-computer-science-h046.pdf
https://www.ocr.org.uk/Images/170845-specification-accredited-as-level-gce-computer-science-h046.pdf
https://www.ocr.org.uk/Images/170844-specification-accredited-a-level-gce-computer-science-h446.pdf
https://www.ocr.org.uk/Images/170844-specification-accredited-a-level-gce-computer-science-h446.pdf
https://www.ocr.org.uk/Images/170844-specification-accredited-a-level-gce-computer-science-h446.pdf

OmniSci (2020). Graphical User Interface. Available at: https://www.omnisci.com/

technical-glossary/graphical-user-interface (Accessed: 14/11/20).

Ortiz, O. O., Franco, J. Á. P., Garau, P. M. A. & Martín, R. H. (2017). 'Innovative

Mobile Robot Method: Improving the Learning of Programming Languages in

Engineering Degrees', IEEE Transactions on Education, 60(2), pp. 143-148.

Parsons, D. & Haden, P. (2006). ’Parson’s programming puzzles: a fun and effective

learning tool for first programming courses', Proceedings of the 8th Australasian

Conference on Computing Education - Volume 52, Hobart, Australia: Australian

Computer Society, Inc., pp. 157–163.

Pearson (2019a). Pearson BTEC Certificates for the Level 3 Software Development

Te c h n i c i a n A p p r e n t i c e s h i p S t a n d a r d . A v a i l a b l e a t : h t t p s : / /

qualifications.pearson.com/content/dam/pdf/BTEC-Specialist-Qualifications/

P r o g r a m m i n g / 2 0 1 9 / s p e c i fi c a t i o n - a n d - s a m p l e - a s s e s s m e n t s /

9781446960226_BTEC_Splt_L3_SoftDevTech.pdf (Accessed: 20/4/21).

Pearson (2019b). GCSE (9-1) Specifications Grade Statistics (Final). Available at:

https://qualifications.pearson.com/content/dam/pdf/Support/Grade-statistics/

GCSE/grade-statistics-june-2019-final-gcse-9-1-specifications.PDF (Accessed:

20/4/21).

Pearson (2020). GCSE (9-1) Computer Science. Available at: https://

qualifications.pearson.com/content/dam/pdf/GCSE/Computer%20Science/2020/

s p e c i fi c a t i o n - a n d - s a m p l e - a s s e s s m e n t s /

GCSE_L1_L2_Computer_Science_2020_Specification.pdf (Accessed: 20/4/21).

Piteira, M. & Costa, C. 'Learning computer programming: study of difficulties in

learning programming', Proceedings of the 2013 International Conference on

70

https://qualifications.pearson.com/content/dam/pdf/BTEC-Specialist-Qualifications/Programming/2019/specification-and-sample-assessments/9781446960226_BTEC_Splt_L3_SoftDevTech.pdf
https://qualifications.pearson.com/content/dam/pdf/BTEC-Specialist-Qualifications/Programming/2019/specification-and-sample-assessments/9781446960226_BTEC_Splt_L3_SoftDevTech.pdf
https://qualifications.pearson.com/content/dam/pdf/BTEC-Specialist-Qualifications/Programming/2019/specification-and-sample-assessments/9781446960226_BTEC_Splt_L3_SoftDevTech.pdf
https://qualifications.pearson.com/content/dam/pdf/Support/Grade-statistics/GCSE/grade-statistics-june-2019-final-gcse-9-1-specifications.PDF
https://qualifications.pearson.com/content/dam/pdf/Support/Grade-statistics/GCSE/grade-statistics-june-2019-final-gcse-9-1-specifications.PDF
https://qualifications.pearson.com/content/dam/pdf/GCSE/Computer%20Science/2020/specification-and-sample-assessments/GCSE_L1_L2_Computer_Science_2020_Specification.pdf
https://qualifications.pearson.com/content/dam/pdf/GCSE/Computer%20Science/2020/specification-and-sample-assessments/GCSE_L1_L2_Computer_Science_2020_Specification.pdf
https://qualifications.pearson.com/content/dam/pdf/GCSE/Computer%20Science/2020/specification-and-sample-assessments/GCSE_L1_L2_Computer_Science_2020_Specification.pdf

Information Systems and Design of Communication, Lisboa, Portugal: Association

for Computing Machinery, pp. 75–80.

Programiz (2021). Python exec(). Available at: https://www.programiz.com/python-

programming/methods/built-in/exec (Accessed: 9/5/21).

Python Software Foundation (2021a). time — Time access and conversions.

Available at: https://docs.python.org/3/library/time.html (Accessed: 30/4/21).

Python Software Foundation (2021b). threading — Thread-based parallelism.

Available at: https://docs.python.org/3/library/threading.html (Accessed: 30/4/21).

Python Software Foundation (2021c). random — Generate pseudo-random

numbers. Available at: https://docs.python.org/3/library/random.html (Accessed:

30/4/21).

Python Software Foundation (2021d). 6. Modules. Available at: https://

docs.python.org/3/tutorial/modules.html (Accessed: 6/5/21).

Rehberger, S., Frank, T. & Vogel-Heuser, B. (2013). ‘Benefit of e-learning teaching C-

programming and software engineering in a very large mechanical engineering

beginners class’. In: 2013 IEEE Global Engineering Education Conference

(EDUCON), 13-15 March 2013 2013. pp. 1055-1061 (Accessed: 8/3/21).

Rubio, M. A., Hierro, C. M. & Pablo, A. (2013). ‘Using arduino to enhance computer

programming courses in science and engineering’. In: Proceedings of

EDULEARN13 conference, 2013. IATED Barcelona, Spain. pp. 1-3 (Accessed:

4/3/21).

Sentance, S., Waite, J. & Kallia, M. (2019). 'Teaching computer programming with

PRIMM: a sociocultural perspective', Computer Science Education, 29(2-3), pp.

136-176.

71

https://www.programiz.com/python-programming/methods/built-in/exec
https://www.programiz.com/python-programming/methods/built-in/exec
https://docs.python.org/3/library/time.html
https://docs.python.org/3/library/threading.html
https://docs.python.org/3/library/random.html
https://docs.python.org/3/tutorial/modules.html
https://docs.python.org/3/tutorial/modules.html

Stangroom, J. (2021). The Kolmogorov-Smirnov Test of Normality. Available at:

https://www.socscistatistics.com/tests/kolmogorov/default.aspx (Accessed:

4/5/21).

Sun, W., Sun, X. (2011). 'Teaching Computer Programming Skills to Engineering and

Technology Students with a Modular Programming Strategy', 2011 ASEE Annual

Conference & Exposition, Vancouver, BC, 2011/06/26.

Tillmann, N., Halleux, J. d., Xie, T., Gulwani, S. & Bishop, J. (2013). ‘Teaching and

learning programming and software engineering via interactive gaming’. In: 2013

35th International Conference on Software Engineering (ICSE), 18-26 May 2013

2013. pp. 1117-1126 (Accessed: 11/11/20).

Tsai, C. Y. (2019). 'Improving students' understanding of basic programming

concepts through visual programming language: The role of self-

efficacy', Computers in Human Behavior, 95, pp. 224-232

Vihavainen, A., Paksula, M. & Luukkainen, M. (2011). ’Extreme apprenticeship

method in teaching programming for beginners', Proceedings of the 42nd ACM

technical symposium on Computer science education, Dallas, TX, USA: Association

for Computing Machinery, pp. 93–98.

Vihavainen, A., Airaksinen, J. & Watson, C. (2014). ’A systematic review of

approaches for teaching introductory programming and their influence on

success', Proceedings of the tenth annual conference on International computing

education research, Glasgow, Scotland, United Kingdom: Association for

Computing Machinery, pp. 19–26.

Wang, E. (2001). ‘Teaching freshmen design, creativity and programming with

LEGOs and Labview’. In: 31st Annual Frontiers in Education Conference. Impact on

72

https://www.socscistatistics.com/tests/kolmogorov/default.aspx

Engineering and Science Education. Conference Proceedings (Cat. No.01CH37193),

10-13 Oct. 2001 2001. pp. F3G-11 (Accessed: 11/11/20).

WJEC (2019a). WJEC GCSE in Computer Science. Available at: https://

www.wjec.co.uk/media/jymdzl0a/wjec-gcse-comp-science-spec-2017-

e-04-05-2020.pdf (Accessed: 20/4/21).

WJEC (2019b). WJEC Eduqas GCE A Level in Computer Science. Available at:

https://www.eduqas.co.uk/media/zhpapwjj/eduqas-a-level-computer-science-spec-

from-2015-e-24-01-2020.pdf (Accessed: 20/4/21).

WJEC (2019c). WJEC Legacy and Revised New Wales Final GCSE Results.

Available at: https://www.wjec.co.uk/media/a1ep0gcx/final-results-june-2019.pdf

(Accessed: 20/4/21).

WJEC (2019d). WJEC GCE AS/A Level in Further Mathematics. Available at: https://

www.wjec.co.uk/media/hcpnsu41/wjec-gce-further-maths-spec-from-2017-e.pdf

(Accessed: 7/5/21).

WJEC (2019e). WJEC GCE AS/A Level in Mathematics. Available at: https://

www.wjec.co.uk/media/lm3fegtu/wjec-gce-maths-spec-from-2017-e.pdf

(Accessed: 7/5/21).

WJEC (2020). WJEC Eduqas GCE AS in Computer Science. Available at: https://

www.eduqas.co.uk/media/wc2fgbyp/eduqas-as-computer-science-spec-

from-2015-e-090119.pdf (Accessed: 20/4/21).

WJEC (2021). All resources by subject. Available at: https://resources.wjec.co.uk/

Pages/ResourceByArgs.aspx?subid=6&lvlid=2 (Accessed: 20/4/21).

Woodley, M., Kamin, S. N. (2007). 'Programming studio: a course for improving

programming skills in undergraduates', SIGCSE Bull., 39(1), pp. 531–535.

73

https://www.wjec.co.uk/media/jymdzl0a/wjec-gcse-comp-science-spec-2017-e-04-05-2020.pdf
https://www.wjec.co.uk/media/jymdzl0a/wjec-gcse-comp-science-spec-2017-e-04-05-2020.pdf
https://www.wjec.co.uk/media/jymdzl0a/wjec-gcse-comp-science-spec-2017-e-04-05-2020.pdf
https://www.eduqas.co.uk/media/zhpapwjj/eduqas-a-level-computer-science-spec-from-2015-e-24-01-2020.pdf
https://www.eduqas.co.uk/media/zhpapwjj/eduqas-a-level-computer-science-spec-from-2015-e-24-01-2020.pdf
https://www.wjec.co.uk/media/a1ep0gcx/final-results-june-2019.pdf
https://www.wjec.co.uk/media/hcpnsu41/wjec-gce-further-maths-spec-from-2017-e.pdf
https://www.wjec.co.uk/media/hcpnsu41/wjec-gce-further-maths-spec-from-2017-e.pdf
https://www.wjec.co.uk/media/lm3fegtu/wjec-gce-maths-spec-from-2017-e.pdf
https://www.wjec.co.uk/media/lm3fegtu/wjec-gce-maths-spec-from-2017-e.pdf
https://www.eduqas.co.uk/media/wc2fgbyp/eduqas-as-computer-science-spec-from-2015-e-090119.pdf
https://www.eduqas.co.uk/media/wc2fgbyp/eduqas-as-computer-science-spec-from-2015-e-090119.pdf
https://www.eduqas.co.uk/media/wc2fgbyp/eduqas-as-computer-science-spec-from-2015-e-090119.pdf
https://resources.wjec.co.uk/Pages/ResourceByArgs.aspx?subid=6&lvlid=2
https://resources.wjec.co.uk/Pages/ResourceByArgs.aspx?subid=6&lvlid=2

Yacob, A. & Saman, M. Y. M. (2012). ‘Assessing level of motivation in learning

programming among engineering students’. In: The International Conference on

Informatics and Applications (ICIA2012). Malaysia:[sn], 2012. pp. 425-432.

Yildiz Durak, H. (2018). 'Digital story design activities used for teaching

programming effect on learning of programming concepts, programming self-

efficacy, and participation and analysis of student experiences', Journal of

Computer Assisted Learning, 34(6), pp. 740-752. 

74

Appendices

Appendix A - Reflection and Project Management

Looking back to the first semester of the year, the focus of the author was mainly on

the other units such as Operations Management tests and coursework, or Design 3

reports as opposed to the Individual Project. As such, only two-thirds of the

research was carried out in terms of pedagogical literature alongside the preliminary

plans for the survey during the first semester; research into Python and MATLAB

code began alongside the brainstorming of the software exercises. At the end of the

first semester, a reassessment of the objectives was carried out which ultimately

meant that the idea of a GUI for the software was dropped. Because the GUI was

dropped, research into GUI frameworks was also dropped.

At the beginning of the second semester, the generation of the cheatsheets began;

following that, the programming of the software also began, and the bulk of the

code was completed within 2 weeks, which although started later than expected

was finished a lot sooner than expected as well. At roughly the same time, however,

the decision to abandon the ethical approval was made as there was no response

from the ethical team, which was predicted in the project plan. Instead, a

contingency plan from the project proposal was used, whereby the analysis period

for the survey was cut down and pushed to a later date in order to compensate for

the delay. In addition, only secondary school teachers would be allowed to respond

to the survey as opposed to both teachers and students, allowing the author to

bypass the ethical approval stage. The survey was finalised and was sent to both

Dr. Simmons and Technocamps for distribution.

The most time-consuming part of the project was attempting to find pedagogical

literature and reviewing the academic journals, which took 2 months during the

75

second semester. During the two months, minor tweaks and engineering contexts

were added to the software as well as finalisations to the cheatsheets; the MATLAB

engine API was incorporated into one of the exercises of the software and a. main

menu was generated. Foreseeing that the code would be difficult to test in the

project plan, the idea of splitting up the code into functions was followed, which

made testing simpler as only individual sections needed to be tested; a series of

test data was used in order to accomplish the goal. Once all the other tasks were

completed, the analysis of the survey began, and the conclusion, analysis of

limitations, and reflections began.

Whilst a few objectives have had to change due to a review or due to external

factors, the methodology that was actually used in the project did not vary much

from the methodology written in the project plan.

Throughout the Individual Project, being stressed was a major issue for the author

due to being unfamiliar with doing large projects with much less guidance in

comparison to the other units in the past. Additionally, adhering to either of the

project plans were difficult since both of the plans were too optimistic; the first plan

did not account for coursework and reports from other units of the course, and the

second project plan did not account for the responsiveness of other people such as

the ethics team and the participants of the study as well as the reading and writing

skills of the author. As such, time management was a major problem throughout the

project leading to stress, and many of the milestones were only reached closer

towards the end of the second semester. Problems with time management have

also meant that much of the time spent in the second semester was on the project

as opposed to revision for units in the second semester. Being unable to go to the

university to complete the project had meant that more time was spent

76

procrastinating as well, despite having had social media websites disabled for all

devices.

Excitement and uncertainty were feelings felt by the author at the start of the

project, as while the author had done mentoring and programming prior to the

project and would like to know methods that could assist in both learning and

teaching programming, the author also did not know what would be required in

order to complete the project. Moreover, the COVID-19 pandemic had only

exacerbated the feeling of uncertainty as actions such as distributing surveys and

communicating with the supervisor regarding the project was made more difficult.

Especially during the first 2 months of the second semester, a sense of dispiritment

was felt as the research and literature review seemed repetitive, and the pandemic

has meant that exchanging ideas with peers in order to keep the reviewing part of

the project fascinating had become impossible. Furthermore, spending a large

portion of time at home was somewhat demotivating.

When Technocamps agreed to assist in distributing the survey, a sense of surprise

was felt and the motivation for completing the project was slowly renewed; the

feeling has amplified the closer towards the deadline of the project. As the project

nears its final stages, a sense of relief and proudness can also be felt, as the

Individual Project is one that has spanned many months and is one of the longest

projects the author has completed to date.

Through the Individual Project, the author has learnt that having a separate work

only account of a computer and disabling social media on devices are crucial in

minimising procrastination, which is something that the author will use in future

projects and essays. As well, the facilities open to students at the university are vital

for long essays and projects due to the more serious environment, allowing

77

students to gain motivation. Additionally, the use of remote learning for long

projects such as the Individual Project is demoralising, and steps should be taken to

ensure that such effects are minimised. One method of improving such a situation is

to have some sort of reward once certain milestones have been achieved.

Reflecting on the Individual Project, one of the main areas which could have been

improved was the utilisation of even more connections to distribute the survey, as is

one of the main things to be wary of should a similar project be carried out in the

future. As mentioned previously, using the university facilities or different

environments to work on long projects would be beneficial in combatting

repetitiveness and motivation problems. Finally, despite having mentioned the use

of pseudocode in the project plan, pseudocode was not used in the programming of

the software. In future programming projects, the author will bear in mind to use

such a tool to save time and effort. 

78

 

79

Figure 16: Initial Project Plan

 

80

Figure 17: Revised Project Plan

 

81

Figure 18: Actual Project Tim
eline

Appendix B - Survey

82

 

83

 

84

85

Figures 19a-19e: Screenshots of the survey 

86

Appendix C - Participants’ Paragraph Answers and T-Test Values

Question 3

• Maths is needed for engineering and is covered in the CS modules

• Even if programming skills are not relevant to an engineer's current job, they could

be relevant to future jobs, so having those skills gives an engineer more options in

terms jobs that they can apply for and jobs that they can do.

• all engineering/stem jobs will not involved computer and programming to take

advantage of the technology available to us in the sector

• Engineers need to understand what is happening with within the process, so need

to understand inputs/outputs and programming helps to get a further

understanding of that

• Problem solving etc

• Quite subjective as this may not apply to all engineering professions such as

mechanical engineering. Problem solving skills and the ability to break a problem

down would be more relevant. If the question indicated which engineering group,

a more specific response could be given. E.g. Electrical engineering -"Strongly

Agree".

• The quickest way to analyse data nowadays is usually to throw it into a computer

model using something like the Matplotlib or Pandas library in Python

• I don't believe one's value is tied directly to their tangible skills. Their are swathes

of people who specialise in theoretical computer science and are the brains

behind development teams at University level. Whilst it's quite important (more so

as the years pass) that they have a basic understanding of programming

principles, the actual formal ability to program in a given language is not as

necessary. Is it a good career choice - yes. 

87

Must you understand functions and programming paradigms and patterns -

yes.Their is space for anything the world needs and whilst programming is more

and more prevalent, the success of engineers and software engineers is simply

correlation not causation. Who is to say that windmill repair doesn't become the

next big thing :) 

In short, programming is a medium for people to solve problems within a clearly

defined syntax and set of rules. This makes understanding problems simpler by

abstracting the nuance of language - it is as integral as learning another language

(arguably more so) but ultimately we aren't at a stage where we should make

everyone a programmer.

• Engineering is about solving a problem. 

When someone is programming (especially at a GCSE level) they are solving

simple problems computational

• As engineers are making robots etc understanding how that robot is made to

function using programming is essential. Also autonomous factories have

engineers design the equipment and they need to understand how they can make

it function when making something for a customer/client

• Programming teaches you to break problems down into smaller parts. A process

that we call decomposing the problem. This is a useful life skill regardless of your

profession.

• Because engineering contains a load of calculation, modelling, simulations etc

that a knowledge of programming would help with.

• Because being able to think computationally improves your problem solving skills

as well as being able to model, design using computational models, etc.

88

• Machine code skills and C programming language is very useful towards

programming CAD/CAM and CNC milling machines, as well as programming

robotic arms.

• Understanding the program or design you are going to use will help collate

information for a better understanding.

Question 5

• Perceived difficulty of the subject and not enough time spent at KS3

• Interest and motivation - if this is an area that a pupil is not interested in, then they

are unlikely to learn programming, or pursue programming-related careers. Also,

even though SO MANY people in today's World are extremely reliant on

computers (phones, laptops, tablets, etc...), are in love with their computers, and

could not function without their computers, their interest is in the using of the

computers, and not how they work and how they are made to work - e.g. many

school pupils would rather play a computer game and understand how the game

that they love works. They are stuck in the Matrix, but they cannot see the wood

for the trees! 

Lack of understanding and awareness - many pupils do not know the

opportunities that could be available to them, if they learn programming skills (i.e.

all of the different jobs that it can be used in, and all of the future jobs that will

require it). 

Fear of the subject and lack of literacy skills. 

Lack of role models in the field - in certain areas/communities/families, pupils do

not know someone involved in programming-related jobs, so they do not 'aspire'

to be like someone who does that job. 

89

Sometimes, it is also possible for educators to be unable to see things from the

pupils' points of view - e.g. I have seen people who are really good at

programming not being able to understand how pupils cannot do/learn some of

the most basic programming techniques, and so struggling to pitch activities/

teaching at the correct level for the pupils to access it. 

Sometimes, schools introduce Computer Science to the curriculum, and teachers

are expected to teach Computer Science and programming, but they are not

given the time and the training needed for them to develop their own skills. There

are an awful lot of skills and knowledge needed for the subject, and these skills

and knowledge are not things that teachers should just be expected to 'have' or

to develop in their own time. Teachers need to be given time and resources to

develop their own skills, before they can be expected to teach them to the pupils.

• how much it is used in all sciences, media, problem solving, design, everything!

and HOW it is used.

• Stereotypes

• Enjoyment & money

• Passion for the subject. Genuine interest.

• Confidence, prior attainment (e.g. success in coding lower down the school)

• Their exposure to good teaching and supportive teachers who introduce the

subject and modules in an engaging manner is the main factor. Our decisions

(scientifically) are dictated by our genetics and our environment - the ability for

programming/engineering principles to be applied to every field can mean that

even someone who is not inclined to enter the industry can see it's beauty from a

different angle. 

The underlying thing here is motivation - this can be made extrinsic using the high

90

salaries and competitions that are prevalent currently, but I don't think this is an

ideal means of affecting a students decision.

• Programming is such a small part of the GCSE computer science spectfication. 

Programming is eseemtially learning a new language, it takes hard work, and

dedication to master it. Without an interest or natural ability for it, its hard, the

level of difficulty puts people off 

Not all Computer Science teachers are aware of the Labour Market information

relating to programing related careers, and so can not share that with their

students.

• They think a programming career involves sitting in front of a computer all the time

not understanding the impact the use of such a skill can have on people's lives

• A genuine interest in coding and solving problems.

• How the topic of programming is presented at a younger age. If it is dry and not

for a purpose they are interested in, they won't be interested. If it is in a fun

context or a context that they decide on themselves like a personal project, then

they will become more interested and more likely to learn it.

• They perceive it as difficult and/or boring, mainly to the way that it is taught and

the content of the qualifications.

• The money and the challenge!

• Capabilities would the biggest factor or barrier as it can become very stressful but

achieving the end result will encourage students to gain self belief and have

enjoyment

91

Question 6a

H0: The mean of the survey data set is the same as the mean of the data gathered

by Piteira and Costa (2013) for the teachers (different countries)

H1: The mean of the survey data set is NOT the same as the mean of the data

gathered by Piteira and Costa (2013) for the teachers (different countries)

Table 7: Numbers and calculations for the T-test

Question 6b

• Pseudocode

• Knowing where to start. 

Knowing what language to start with. 

Understanding the purpose of what you are learning. 

Understanding what you are learning can be used for. 

Seeing where these skills can lead and take you. 

Lack of ability to focus and concentrate on something that is not big, loud and

entertaining. 

Access to equipment and resources for learning.

• getting over the assumption that it is hard, complicated and harder than other

subjects

T-test Syntax Data Set Debugging Data Set

Mean (Likert seven-point
scale)

Standard Deviation 1.590148 1.365388

T-value 1.94797 1.68349

Degree of Freedom

P-value at 10% !-level 1.725 1.714

(2.5 × 6) + (4 × 2) + (5.5 × 6) + (7 × 1)
15 = 4.2

22.995 ≈ 2320.245 ≈ 20

(2.5 × 2) + (4 × 7) + (5.5 × 4) + (7 × 2)
15 = 4.6

92

• real world examples that they can relate to.

• Previous experiences, exposure to the subject, regular access to resources.

• Media stereotyping of STEM practitioners can put off e.g. girls and people of

colour

• In most cases there is a central source for good resources that is tailored to

engage KS3 - for example BBC Bitesize. Whilst with CS we have W3Schools and

some others, they are more documentation-style websites which require a student

to already have motivation for learning and they are less likely to encourage or

nurture a students early learning.

• I find that students often find it difficult to apply what they have learn't to

decomposing other problems. Often they have the skills but don't necessarily

realise that they can be applied to a given situation. A lot of this stems from the

fact that they don't always code between lessons. Which is vital in this subject.

Plus the fact that with the WJEC we are trying to cram three modules into two

lessons per week. Three into two simply won't go.

• Focusing on the general programming concepts as opposed to how to implement

them in a specific language.

• The computational thinking behind it needs to be taught and understood first.

• The difference between procedural and object orientated

• Ensuring all students understand the functions and operational components that

are taking place

Question 7b

• Make the programming relevant ie use Edbots and DJI drones along with other

practical examples.

93

• Introduce them to the basics of the subject and lead them to achieve success with

the basic skills. 

Try to find areas of the subject that interest them. 

Introduce some of the interesting history of the subject. 

Give the pupils a greater awareness of the purpose of what they are learning and

why it could be really useful for them (i.e. make them understand what you are

teaching them - don't just teach it to them). 

Give the pupils a variety of experiences with the subject (e.g. programming

games, programming maths tools, debugging, programming with different

languages, complete a programming-based project, learn theory, exams, etc...). 

Give the pupils more of an idea of what jobs the subject could lead them to in the

future. 

Understand that we are all different, so what works (in terms of learning) for one

pupil, will not necessarily work for another - there is no one set way of learning/

doing something. 

Understand that some pupils are just not interested in programming, and never

will be, so as long as you do your job and give them a basic introduction and try

to help them to find interest in the subject, then you are teaching them in the right

way.

• start them young. start using tools and apps for programming at a young age and

keep that momentum throughout their education. make it second nature, just like

using a computer for PowerPoint or writing an essay is already

• small programs that they are given they edit and improve them to be able to see

them working

94

• Unplugged activities. Not everything in CS needs to be in front of a computer

screen. Not all students learn in the same way and or retain information. Many

programming concepts can be taught through alternative interactive tasks to gain

the core basic understanding before trying to apply it to code. 

Teachers need to be able to adapt and be dynamic when delivering complex

topics and especially when teaching programming skills. Failure to do so results in

loss of interest and motivation from students. Being able to think creatively and

logically as well as knowing your class when planning programming lessons is

essential to its success.

• Project-based learning e.g. build a product

• Fixed (university-style) assignments whereby the project is determined by the

assessor and they are introduced to the concept of a marking rubric, as they

develop the stringent requirements of the rubric slowly become more vague until

they are at a stage where they understand how to break down an idea into

requirements using SDLC practices.

• Tutorials are important. The students need to learn the coding techniques, syntax

etc but also understand the theory behind why they do things the way they do.

Plus, as stated previously they really need to code as a hobby in between lessons.

Not just do a lesson and leave it for a week until the next one.

• Using physical devices such as microbits, raspberry pi, etc. Programming for a

real purpose that the students can get excited about. Too much of the

qualification content is based on things that the students don't care about and

cannot relate to - i.e. accounting, stock control, etc.

• Show and copy or ensure loads of practise is given to the student! In addition, if

they fail then praising them and encourage them to try again 

95

Appendix D - Cheatsheets

96

 

97

 

98

 

99

Figures 20a-20e: Screenshots of the Python and MATLAB cheatsheets  

100

Appendix E - Main Menu Code

Created by Kin Leung (27th April of 2021) for the Individual Project

titled 'Programming for Engineers: Removing Barriers and Improving Outcomes'.

This piece of code incorporates all the separate pieces of code into one,

forming the full software. (Python Software Foundation, 2021).

import Questions

Define a function for printing out all the list of actions available to the

user.

def print_actions():

 print("1. Fill In the Gap")

 print("2. Fill In the Gap (MATLAB)")

 print("3. Correct the Errors")

 print("4. Program Writing")

 print("5. Program Writing 2")

 print("6. Exit")

Begin by welcoming the user to the software and reveal to them the possible

actions they can choose.

print("Hello! Welcome to the Automatic Revision Tool (ART).")

print("Main Menu")

print_actions()

Let the user choose.

chosen_action = input("Please input the number for what you would like"

101

 " to do: ")

Evaluate which number the student choose. Invoke the corresponding

actions that has been chosen.

if chosen_action == '1':

 Questions.Fill_In_The_Gap()

elif chosen_action == '2':

 Questions.Fill_In_The_Gap_MATLAB()

elif chosen_action == '3':

 Questions.Correct_The_Errors()

elif chosen_action == '4':

 Questions.Program_Writing()

elif chosen_action == '5':

 Questions.Program_Writing_Two()

elif chosen_action == '6':

 exit()

Python Software Foundation (2021). 6. Modules. Available at:

https://docs.python.org/3/tutorial/modules.html#modules (Accessed: 29/4/21).

102

Appendix F - Questions Module Code

Created by Kin Leung (27th April of 2021) for the Individual Project titled

'Programming for Engineers: Removing Barriers and Improving Outcomes'. This

module encompasses several types of questions (in the form of functions) that

can be used to help the student revise.

Created by Kin Leung (8th February of 2021) for the Individual Project titled

'Programming for Engineers: Removing Barriers and Improving Outcomes'.

This piece of code takes a text file which contains a specification of what

it does at the start of the file as well as an incomplete piece of code. What

the student has to do is input the correct Python code which gets executed to

find the correct value (which is also contained in the file). This allows

this particular piece of code to be reusable for different text files.

Create a variable to store the text file's name, which is defaulted to be

InputFile.txt.

def Fill_In_The_Gap():

 text_file_name = "InputFile.txt"

 # Tell the students what the purpose of this code is for.

 print("Fill In the Gap")

 print("The following is an incomplete piece of code. You need to type in a",

 "line of code with the correct syntax to fill in the gap, which will",

 "then be executed. The answer which is obtained will then be compared",

 "with the answer provided by the text file.")

103

 # Open the text file and take all the lines (W3Schools, 2021).

 text_file = open(text_file_name, 'r')

 text_lines = text_file.readlines()

 text_file.close()

 # Create variables to store the answer and the line at which the answer is

 # given as well as the line which contains the >gap< tag and the line where the

 # gap is.

 given_answer = None

 answer_line = None

 line_to_fill = None

 gap_line = None

 # Check the lines for the >ans< and >gap< tags, which denotes the expected

 # final answer and the line which the student needs to fill respectively.

 for index in range(len(text_lines)):

 if ">ans<" in text_lines[index]:

 # Extract the final answer from the line and keep track of which line

 # this is.

 given_answer = text_lines[index].replace(">ans<", "")

 answer_line = index

 if ">gap<" in text_lines[index]:

 # Do the same for the gap.

 line_to_fill = text_lines[index].replace(">gap<", "")

 gap_line = index

104

 # Assuming that the given values are integers, convert both of the extracted

 # values to int type. line_to_fill needs to be an index, hence needs to

 # subtract by 1.

 given_answer = int(given_answer)

 line_to_fill = int(line_to_fill) - 1

 # Delete the lines containing the >ans< and >gap< tags.

 del text_lines[answer_line]

 if answer_line < gap_line:

 del text_lines[gap_line - 1]

 else:

 del text_lines[gap_line]

 # Adjust the value in line_to_fill as two lines have now been deleted.

 if answer_line < line_to_fill and gap_line < line_to_fill:

 line_to_fill = line_to_fill - 2

 elif ((answer_line < line_to_fill < gap_line)

 or (gap_line < line_to_fill < answer_line)):

 line_to_fill = line_to_fill - 1

 # Output the remainder of the text file to the student.

 for index in range(len(text_lines)):

 print(text_lines[index])

105

 # Eliminate the comments from the list by searching for # at the beginning

 # of the line starting from the end of the list so that the indices do not

 # change when the comments are being deleted.

 for index in range(len(text_lines) - 1, -1, -1):

 if text_lines[index].find("#") == 0:

 del text_lines[index]

 # Create a variable to store a boolean for the while loop which allows multiple

 # attempts of the same problem. Defaults to false.

 answer_is_correct = False

 # Use a while loop to allow multiple submissions.

 while not answer_is_correct:

 # Ask the student for the omitted line of code, appending a newline

 # character at the end.

 student_answer = input("Please input your line of code:\n") + '\n'

 # Create a variable to store the string containing the list statements as a

 # single string, which is initially empty.

 answer_string = ""

 # Convert the list into a single string.

 for index in range(len(text_lines)):

 # If the index is the same as the line_to_fill value, then inject the

 # student's code before adding the remainder of the statements from the

106

 # list.

 if line_to_fill == index:

 answer_string = answer_string + student_answer

 answer_string = answer_string + text_lines[index]

 # Try to execute the string (khelwood, 2018).

 try:

 exec(answer_string, globals())

 # If the code was successfully executed, then the final answer is in

 # final_answer. Compare that value to given_answer.

 if final_answer == given_answer:

 # Congratulate the student for giving the correct statement and set

 # the boolean answer_is_correct to true.

 print("Well done! The final answer is correct!")

 answer_is_correct = True

 # If the answer was not correct, then report that to the student.

 else:

 print("Unfortunately, your answer did not provide the correct",

 "result after execution. Please try again.")

 # If this causes an error, then the line of code (either syntax, variable

 # name or otherwise is wrong). All the errors are caught here.

 # (Python Software Foundation, 2021d).

 except SyntaxError:

 print("The syntax for your line of code was not correct. Please try",

 "again.")

107

 except NameError as error:

 print("A NameError has been raised by the parser. This was the",

 "message:")

 print(error)

 print("Please try again.")

 except IndexError:

 print("Your line of code caused the index of a statement to be out of",

 "bounds. Please try again.")

 # If there are other errors, then catch it and report that an unknown error

 # has occurred. (Python Software Foundation, 2021d).

 except Exception as error:

 print("An unknown error has occurred. This was the message passed by",

 "the parser:")

 print(error)

 print("Please try again.")

Created by Kin Leung (8th February of 2021) for the Individual Project titled

'Programming for Engineers: Removing Barriers and Improving Outcomes'.

This piece of code takes a text file which contains a specification of what

it does at the start of the file as well as an incomplete piece of code. What

the student has to do is input the correct Python code which gets executed to

find the correct value (which is also contained in the file). This allows

this particular piece of code to be reusable for different text files.

(Mathworks Inc., 2021b).

def Fill_In_The_Gap_MATLAB():

108

 import matlab.engine

 # Create a variable to store the text file's name, which is defaulted to be

 # InputFile.txt.

 text_file_name = "InputFile template.txt"

 # Tell the students what the purpose of this code is for.

 print("Fill In the Gap (MATLAB)")

 print("The following is an incomplete piece of code. You need to type in a",

 "line of code with the correct syntax to fill in the gap, which will",

 "then be executed. The answer which is obtained will then be compared",

 "with the answer provided by the text file.")

 # Open the text file and take all the lines (W3Schools, 2021).

 text_file = open(text_file_name, 'r')

 text_lines = text_file.readlines()

 text_file.close()

 # Create variables to store the answer and the line at which the answer is

 # given as well as the line which contains the >gap< tag and the line where the

 # gap is.

 given_answer = None

 answer_line = None

 line_to_fill = None

 gap_line = None

109

 # Check the lines for the >ans< and >gap< tags, which denotes the expected

 # final answer and the line which the student needs to fill respectively.

 for index in range(len(text_lines)):

 if ">ans<" in text_lines[index]:

 # Extract the final answer from the line and keep track of which line

 # this is.

 given_answer = text_lines[index].replace(">ans<", "")

 answer_line = index

 if ">gap<" in text_lines[index]:

 # Do the same for the gap.

 line_to_fill = text_lines[index].replace(">gap<", "")

 gap_line = index

 # Assuming that the given values are integers, convert both of the extracted

 # values to int type. line_to_fill needs to be an index, hence needs to

 # subtract by 1.

 given_answer = int(given_answer)

 line_to_fill = int(line_to_fill) - 1

 # Delete the lines containing the >ans< and >gap< tags.

 del text_lines[answer_line]

 if answer_line < gap_line:

 del text_lines[gap_line - 1]

 else:

110

 del text_lines[gap_line]

 # Adjust the value in line_to_fill as two lines have now been deleted.

 if answer_line < line_to_fill and gap_line < line_to_fill:

 line_to_fill = line_to_fill - 2

 elif ((answer_line < line_to_fill < gap_line)

 or (gap_line < line_to_fill < answer_line)):

 line_to_fill = line_to_fill - 1

 # Output the remainder of the text file to the student.

 for index in range(len(text_lines)):

 print(text_lines[index])

 # Eliminate the comments from the list by searching for # at the beginning

 # of the line starting from the end of the list so that the indices do not

 # change when the comments are being deleted.

 for index in range(len(text_lines) - 1, -1, -1):

 if text_lines[index].find("#") == 0:

 del text_lines[index]

 # Create a variable to store a boolean for the while loop which allows multiple

 # attempts of the same problem. Defaults to false.

 answer_is_correct = False

 # Use a while loop to allow multiple submissions.

111

 while not answer_is_correct:

 # Ask the student for the omitted line of code, appending a newline

 # character at the end.

 student_answer = input("Please input your line of code:\n") + '\n'

 # Create a variable to store the string containing the list statements as a

 # single string, which initially contains only the MATLAB function

 # declaration.

 answer_string = "function final_answer = studentanswer()\n"

 # Convert the list into a single string.

 for index in range(len(text_lines)):

 # If the index is the same as the line_to_fill value, then inject the

 # student's code before adding the remainder of the statements from the

 # list.

 if line_to_fill == index:

 answer_string = answer_string + student_answer

 answer_string = answer_string + text_lines[index]

 # Create a new file and store the contents of the answer_string to the

 # file. Afterward, close the link (W3Schools, 2021).

 testing_file = open("studentanswer.m", 'w')

 testing_file.write(answer_string)

 testing_file.close()

112

 # Start the MATLAB engine (Mathworks Inc., 2021b).

 engine = matlab.engine.start_matlab()

 # Try to execute the file.

 try:

 # (Mathworks Inc., 2021a).

 final_answer = engine.studentanswer()

 # If the code was successfully executed, then the final answer is in

 # final_answer. Compare that value to given_answer.

 if final_answer == given_answer:

 # Congratulate the student for giving the correct statement and set

 # the boolean answer_is_correct to true.

 print("Well done! The final answer is correct!")

 answer_is_correct = True

 # If the answer was not correct, then report that to the student.

 else:

 print("Unfortunately, your answer did not provide the correct",

 "result after execution. Please try again.")

 # If this causes an error, then the line of code (either syntax, variable

 # name or otherwise is wrong). All the errors are caught here.

 # (Python Software Foundation, 2021d).

 except SyntaxError:

 print("The syntax for your line of code was not correct. Please try",

 "again.")

 except NameError as error:

113

 print("A NameError has been raised by the parser. This was the",

 "message:")

 print(error)

 print("Please try again.")

 except IndexError:

 print("Your line of code caused the index of a statement to be out of",

 "bounds. Please try again.")

 # If there are other errors, then catch it and report that an unknown error

 # has occurred (Python Software Foundation, 2021d).

 except Exception as error:

 print("An unknown error has occurred. This was the message passed by",

 "the parser:")

 print(error)

 print("Please try again.")

 finally:

 # Exit the MATLAB engine no matter if the code was successfully

 # executed (Mathworks Inc., 2021a).

 engine.quit()

Created by Kin Leung (14th February of 2021) for the Individual Project

titled 'Programming for Engineers: Removing Barriers and Improving Outcomes'.

This piece of code takes a text file which contains a specification of what

it does at the start of the file as well as a piece of code which contains

errors. What the student has to do is copy the code and then correct all the

errors and exceptions that arise. A final answer will be given once all the

114

errors and exceptions have been corrected, and the student has to input the

final answer value. This will be used to determine if the student succeeded.

This piece of code can be reused for different text files.

Create a variable to store the text file's name, which is defaulted to be

ErrorInputFile.txt.

def Correct_The_Errors():

 text_file_name = "ErrorInputFile.txt"

 # Tell the students what the purpose of this code is for.

 print("Correct the Errors")

 print("The following is an attempt at writing a piece of code for solving a",

 "problem. Sadly, the code would not run due to various errors and",

 "exceptions. Please check the specifications that have been given, copy",

 "the code into a separate file and fix it. Once the code runs, a",

 "final answer will be given. Input that final answer below for marking.")

 # Open the text file and take all the lines (W3Schools, 2021).

 text_file = open(text_file_name, 'r')

 text_lines = text_file.readlines()

 text_file.close()

 # Create variables to store the answer and the line at which the answer is

 # given.

 given_answer = None

 answer_line = None

115

 # Check the lines for the >ans< tag, which denotes the expected final answer.

 for index in range(len(text_lines)):

 if ">ans<" in text_lines[index]:

 # Extract the final answer from the line and keep track of which line

 # this is.

 given_answer = text_lines[index].replace(">ans<", "")

 answer_line = index

 # Delete the line with the answer.

 del text_lines[answer_line]

 # Assuming that the given value is an integer, convert the extracted value

 # to int type.

 given_answer = int(given_answer)

 # Output the remainder of the text file to the student.

 for index in range(len(text_lines)):

 print(text_lines[index])

 # Create a variable to store a boolean for the while loop which allows multiple

 # attempts of the same problem. Defaults to false.

 answer_is_correct = False

 # Use a while loop to allow multiple submissions.

116

 while not answer_is_correct:

 # Ask the student for the final answer.

 student_answer = input("Please input the final answer: ")

 # Check whether the answer is valid and whether the answer is correct.

 try:

 if int(student_answer) == given_answer:

 # Congratulate the student for giving the correct answer and set

 # the boolean answer_is_correct to true.

 print("Well done! The final answer is correct!")

 answer_is_correct = True

 # If the answer was not correct, then report that to the student.

 else:

 print("Unfortunately, your answer was not correct. Please try",

 "again.")

 # If the answer did not have a correct type, then tell the student.

 # (Python Software Foundation, 2021d).

 except ValueError as error:

 print("You did not provide a valid answer. Remember to provide the",

 "final answer as digits to the nearest whole number. Please try",

 "again")

 # If there are other errors, then catch it and report that an unknown error

 # has occurred (Python Software Foundation, 2021d).

 except Exception as error:

 print("An unknown error has occurred. This was the message passed by",

117

 "the parser:")

 print(error)

 print("Please try again.")

Created by Kin Leung (6th February of 2021) for the Individual Project titled

'Programming for Engineers: Removing Barriers and Improving Outcomes'.

This piece of code generates random values of the forces and masses and tells

the student to write a program based on the scenario to calculate the

acceleration. A timer of 15 seconds to input all the forces and masses is

set as well as another 15 seconds to answer three randomised questions.

The timer can be adjusted by changing the variables below. (Python Software

Foundation, 2021a; 2021b; 2021c).

def Program_Writing():

 import random

 import threading

 import time

 # Define a function to get the answers from the student.

 def ask_for_answers(F_list, P_list, M_list, index_for_f, index_for_p,

 index_for_m, given_answers, time_is_up_event):

 # Ask the student for the answers to the randomised questions and append it

 # to the supplied list.

 for index in range(3):

 (given_answers

 .append(input(("What is the acceleration when F is {0}, P is {1} and "

118

 "M is {2}? ").format(F_list[index_for_f[index]],

 P_list[index_for_p[index]],

 M_list[index_for_m[index]]))))

 # If the deadline as already passed, then terminate the thread.

 # (Python Software Foundation, 2021b).

 if time_is_up_event.is_set():

 exit()

 # Specify that the timer for inputting the forces and masses is 20 seconds

 # and the timer for answering the three questions is 15 seconds.

 first_timer_time = 20

 second_timer_time = 15

 # Introduce to the student the problem and the specification that they need to

 # write their program.

 print("Program Writing")

 print("-------")

 print("| M |--> F,P")

 print("-------")

 print("Consider a two locomotive train. Let F and P be the two forces",

 "generated by the engines of the two locomotives in Newtons and M be the",

 "combined mass of the locomotives in kilograms. There will be three",

 "different values for each of F, P and M. Write a program that can",

 "evaluate all the possible values of the acceleration in metres per",

 "second squared. You will have 20 seconds to input all the numbers in",

119

 "and 15 more seconds to answer the three randomised questions at the",

 "end.")

 # Introduce a string variable for checking the input, which is an empty string.

 input_string = ""

 # The program will only continue if the student types in "Continue".

 while input_string!="Continue":

 input_string = input("Please enter \"Continue\" when you are ready: ")

 # Create lists to store the three values each of F, P and M.

 F = []

 P = []

 M = []

 # Generate 6 random values between 10000 and 500000 and and 3 random

values

 # between 90000 and 200000, and assign them to be either F, P or M. Round

each

 # value to two decimal place. (Python Software Foundation, 2021c;

 # Worldwide Rails, 2021).

 for index in range(3):

 F.append(round(random.uniform(10000,500000), 2))

 P.append(round(random.uniform(10000,500000), 2))

 M.append(round(random.uniform(180000,400000), 2))

120

 # Create three lists to store the indices that will be used to generate the

 # three randomised questions and another list to store the answers.

 f_index = []

 p_index = []

 m_index = []

 acceleration = []

 # Generate 9 random integers between 0 and 2 to generate the three randomised

 # questions to ask the student. Calculate the answer using the indices and

 # append it to the acceleration list to two decimal places (Python Software

 # Foundation, 2021c).

 for index in range(3):

 f_index.append(random.randint(0, 2))

 p_index.append(random.randint(0, 2))

 m_index.append(random.randint(0, 2))

 answer = (F[f_index[index]] + P[p_index[index]]) / M[m_index[index]]

 acceleration.append(round(answer, 2))

 # Reveal the numbers to the student and tell them to not press anything.

 print("You have 20 seconds to enter the numbers into your program. The",

 "numbers are:")

 print("F1:", F[0], " F2:", F[1], " F3:", F[2])

 print("P1:", P[0], " P2:", P[1], " P3:", P[2])

 print("M1:", M[0], " M2:", M[1], " M3:", M[2])

121

 print("Please do NOT input anything here.")

 # Sleep for 20 seconds before continuing (Python Software Foundation, 2021a).

 time.sleep(first_timer_time)

 # Create a list variable to store the answers given by the student, which is

 # empty at the start. Create an Event to store a boolean which is used to

 # check if the 15 seconds were up first or if the student inputted the answers

 # first (Python Software Foundation, 2021b).

 student_answers = []

 time_is_up_event = threading.Event()

 # Start a thread which asks the student for the answers.

 # (Python Software Foundation, 2021b).

 answer_thread = threading.Thread(target = ask_for_answers,

 args = (F, P, M, f_index, p_index,

 m_index, student_answers,

 time_is_up_event))

 answer_thread.start()

 # Create a variable to store the current time and add 15 to it for comparison.

 deadline = time.time() + 15

 # Constantly check the time to ensure that the inputs are given in before the

 # 15 seconds have elapsed (Python Software Foundation, 2021b).

122

 while answer_thread.is_alive():

 # If it has been 15 seconds, then set the boolean to true and wait for the

 # thread to terminate. Tell the student to terminate the thread.

 # (Python Software Foundation, 2021a; 2021b).

 if deadline < time.time():

 time_is_up_event.set()

 print("\nTime is up! Press the \"Enter\" key to continue")

 answer_thread.join()

 # If the answers were not answered on time, tell the student that it was not

 # done on time (Python Software Foundation, 2021b).

 if time_is_up_event.is_set():

 print("Unfortunately, you did not answer the questions on time.")

 # Otherwise, mark the questions for the student.

 else:

 print("Marking... Please wait...")

 # Check that the answers given are float numbers and convert them.

 try:

 for index in range(3):

 student_answers[index] = float(student_answers[index])

 # Create a list to keep track of which questions were answered

 # correctly. By default, all values are false. Additionally, create a

 # variable to keep track of the marks. By default, the marks are 0.

 correct_answers = [False, False, False]

 marks = 0

123

 # Check the student's answers compared to the calculated answers.

 # Allow a tolerance of +/-0.01 for each of the answers.

 for index in range(3):

 if ((acceleration[index] - 0.01) <= student_answers[index]

 <= (acceleration[index] + 0.01)):

 correct_answers[index] = True

 marks = marks + 1

 # Report the marks to the student as well as which answers were

 # incorrect if they had any. Congratulate them if all the answers were

 # correct.

 print("Your marks are", marks, "out of 3")

 if correct_answers[0] and correct_answers[1] and correct_answers[2]:

 print("Well done!")

 else:

 for index in range(3):

 if not correct_answers[index]:

 print(("The correct answer for question {0} was {1} whilst"

 " you inputted {2}")

 .format(index + 1, acceleration[index],

 student_answers[index]))

 # If they are not float numbers, tell the student that the answers are not

 # valid (Python Software Foundation, 2021d).

 except ValueError:

 print("You did not give valid answers.")

 # If there are other errors, then catch it and report that an unknown error

124

 # has occurred (Python Software Foundation, 2021d).

 except Exception as error:

 print("An unknown error has occurred. This was the message passed by",

 "the parser:")

 print(error)

 print("Please try again.")

Created by Kin Leung (16th February of 2021) for the Individual Project

titled 'Programming for Engineers: Removing Barriers and Improving Outcomes'.

This piece of code generates random values of the displacement (s), initial

velocity (u) and time (t) and tells the student to write a program based on

the scenario to calculate the acceleration. A timer of 15 seconds to input

all the displacements, initial velocities and times is set as well as another

15 seconds to answer three randomised questions. The timer can be adjusted

by changing the variables below (Python Software Foundation, 2021a; 2021b;

2021c).

def Program_Writing_Two():

 import random

 import threading

 import time

 # Define a function to get the answers from the student.

 def ask_for_answers(s_list, u_list, t_list, index_for_s, index_for_u,

 index_for_t, given_answers, time_is_up_event):

 # Ask the student for the answers to the randomised questions and append it

125

 # to the supplied list.

 for index in range(3):

 (given_answers

 .append(input(("What is the acceleration when s is {0}, u is {1} and "

 "t is {2}? ").format(s_list[index_for_s[index]],

 u_list[index_for_u[index]],

 t_list[index_for_t[index]]))))

 # If the deadline as already passed, then terminate the thread.

 # (Python Software Foundation, 2021b).

 if time_is_up_event.is_set():

 exit()

 # Specify that the timers for inputting the displacements, initial velocities

 # and times and for answering the three questions are 15 seconds.

 first_timer_time = 15

 second_timer_time = 15

 # Introduce to the student the problem and the specification that they need to

 # write their program.

 print("Program Writing 2")

 print("A car travelled s metres in a straight line at an initial velocity of u",

 "metres per second in t seconds. There will be three different values",

 "for each of s, u and t. Write a program that can evaluate all the",

 "possible values of the acceleration in metres per second squared. You",

 "will have 15 seconds to input all the numbers in and 15 more seconds",

126

 "to answer the three randomised questions at the end.")

 # Introduce a string variable for checking the input, which is an empty string.

 input_string = ""

 # The program will only continue if the student types in "Continue".

 while input_string!="Continue":

 input_string = input("Please enter \"Continue\" when you are ready: ")

 # Create lists to store the three values each of s, u and t.

 s = []

 u = []

 t = []

 # Generate 9 random values between 5 and 50 and assign them to be either s, u

 # or t. Round each value to two decimal place (Python Software Foundation,

 # 2021c).

 for index in range(3):

 s.append(round(random.uniform(5,50), 2))

 u.append(round(random.uniform(5,50), 2))

 t.append(round(random.uniform(5,50), 2))

 # Create three lists to store the indices that will be used to generate the

 # three randomised questions and another list to store the answers.

 s_index = []

127

 u_index = []

 t_index = []

 acceleration = []

 # Generate 9 random integers between 0 and 2 to generate the three randomised

 # questions to ask the student. Calculate the answer using the indices and

 # append it to the acceleration list to two decimal places (Python Software

 # Foundation, 2021c).

 for index in range(3):

 s_index.append(random.randint(0, 2))

 u_index.append(random.randint(0, 2))

 t_index.append(random.randint(0, 2))

 answer = ((2 * (s[s_index[index]] - u[u_index[index]] * t[t_index[index]]))

 / (t[t_index[index]] * t[t_index[index]]))

 acceleration.append(round(answer, 2))

 # Reveal the numbers to the student and tell them to not press anything.

 print("You have 15 seconds to enter the numbers into your program. The",

 "numbers are:")

 print("s1:", s[0], " s2:", s[1], " s3:", s[2])

 print("u1:", u[0], " u2:", u[1], " u3:", u[2])

 print("t1:", t[0], " t2:", t[1], " t3:", t[2])

 print("Please do NOT input anything here.")

 # Sleep for 15 seconds before continuing (Python Software Foundation, 2021a).

128

 time.sleep(first_timer_time)

 # Create a list variable to store the answers given by the student, which is

 # empty at the start. Create an Event to store a boolean which is used to

 # check if the 15 seconds were up first or if the student inputted the answers

 # first (Python Software Foundation, 2021b).

 student_answers = []

 time_is_up_event = threading.Event()

 # Start a thread which asks the student for the answers.

 # (Python Software Foundation, 2021b).

 answer_thread = threading.Thread(target = ask_for_answers,

 args = (s, u, t, s_index, u_index,

 t_index, student_answers,

 time_is_up_event))

 answer_thread.start()

 # Create a variable to store the current time and add 15 to it for comparison.

 deadline = time.time() + 15

 # Constantly check the time to ensure that the inputs are given in before the

 # 15 seconds have elapsed (Python Software Foundation, 2021b).

 while answer_thread.is_alive():

 # If it has been 15 seconds, then set the boolean to true and wait for the

 # thread to terminate. Tell the student to terminate the thread.

129

 # (Python Software Foundation, 2021a; 2021b).

 if deadline < time.time():

 time_is_up_event.set()

 print("\nTime is up! Press the \"Enter\" key to continue")

 answer_thread.join()

 # If the answers were not answered on time, tell the student that it was not

 # done on time (Python Software Foundation, 2021b).

 if time_is_up_event.is_set():

 print("Unfortunately, you did not answer the questions on time.")

 # Otherwise, mark the questions for the student.

 else:

 print("Marking... Please wait...")

 # Check that the answers given are float numbers and convert them.

 try:

 for index in range(3):

 student_answers[index] = float(student_answers[index])

 # Create a list to keep track of which questions were answered

 # correctly. By default, all values are false. Additionally, create a

 # variable to keep track of the marks. By default, the marks are 0.

 correct_answers = [False, False, False]

 marks = 0

 # Check the student's answers compared to the calculated answers.

 # Allow a tolerance of +/-0.01 for each of the answers.

 for index in range(3):

130

 if ((acceleration[index] - 0.01) <= student_answers[index]

 <= (acceleration[index] + 0.01)):

 correct_answers[index] = True

 marks = marks + 1

 # Report the marks to the student as well as which answers were

 # incorrect if they had any. Congratulate them if all the answers were

 # correct.

 print("Your marks are", marks, "out of 3")

 if correct_answers[0] and correct_answers[1] and correct_answers[2]:

 print("Well done!")

 else:

 for index in range(3):

 if not correct_answers[index]:

 print(("The correct answer for question {0} was {1} whilst"

 " you inputted {2}")

 .format(index + 1, acceleration[index],

 student_answers[index]))

 # If they are not float numbers, tell the student that the answers are not

 # valid (Python Software Foundation, 2021d).

 except ValueError:

 print("You did not give valid answers.")

 # If there are other errors, then catch it and report that an unknown error

 # has occurred (Python Software Foundation, 2021d).

 except Exception as error:

 print("An unknown error has occurred. This was the message passed by",

131

 "the parser:")

 print(error)

 print("Please try again.")

khelwood (2018). Setting variables with exec inside a function. Available at:

https://stackoverflow.com/questions/23168282/setting-variables-with-exec

-inside-a-function (Accessed: 29/4/21).

Mathworks Inc. (2021a). Call User Scripts and Functions from Python. Available

at: https://uk.mathworks.com/help/matlab/matlab_external/call-user-script-and

-function-from-python.html (Accessed: 29/4/21).

Mathworks Inc. (2021b). Install MATLAB Engine API for Python. Available at:

https://uk.mathworks.com/help/matlab/matlab_external/install-the-matlab

-engine-for-python.html (Accessed: 29/4/21).

Python Software Foundation (2021a). time — Time access and conversions.

Available at: https://docs.python.org/3/library/time.html (Accessed: 30/4/21).

Python Software Foundation (2021b). threading — Thread-based parallelism.

Available at: https://docs.python.org/3/library/threading.html

(Accessed: 30/4/21)

Python Software Foundation (2021c). random — Generate pseudo-random

numbers.

Available at: https://docs.python.org/3/library/random.html

(Accessed: 30/4/21).

Python Software Foundation (2021d). 8. Errors and Exceptions. Available at:

https://docs.python.org/3/tutorial/errors.html (Accessed: 29/4/21).

Worldwide Rails (2021). How Much Do Locomotives Cost?. Available at:

132

https://worldwiderails.com/how-much-do-locomotives-cost/

#:~:text=How%20much%

20does%20a%20locomotive,also%20heavier%20than%20DC%20locomotives.

(Accessed: 30/4/21).

W3Schools (2021). Python File Write. Available at:

https://www.w3schools.com/python/python_file_write.asp (Accessed: 29/4/21).

133

Appendix G - InputFile.txt Code

The given code is for calculating the impulse of an object A on an object B

using Newton's Law of Restitution and the Conservation of Momentum. The mass

of A is given as 5kg, and the initial velocities are given as 12 metres

per second and -4 metres per second for A and B respectively. The velocity

of A after collision is -6 metres per second. The coefficient of restitution

is 5/6. Initially, the Law of Restitution is used to find the velocity of

B after the collision, and conservation of momentum is then used to find the

mass of B. The impulse is then calculated as the change in momentum of B,

which is stored in final_answer.

>ans< 90

>gap< 5

mass = {'a':5}

a_velocities = [12, -6]

b_velocities = [-4]

e = 5/6

Your line will be added here

mass['b'] = (-mass['a'] * a_velocities[0] + a_velocities[1] * mass['a']) / (b_velocities[0]

- b_velocities[1])

final_answer = mass['b'] * (b_velocities[1] - b_velocities[0])

134

Appendix H - Test Data and Outcome

Fill In the Gap:

• —> Error

• 1 —> IndexError

• Test —> NameError

• print “Test” —> SyntaxError

• open(“Test”) —> Error

• b_velocities.append(-e * (b_velocities[0] - a_velocities[0]) + a_velocities[1])

	 —> Correct answer

Fill In the Gap (MATLAB):

• —> Error

• 1 —> Error

• Test —> Error

• disp(“Test”) —> Error

• c=sqrt(4) —> Incorrect answer statement

• c=b*30 —> Correct answer statement

Correct the Errors:

• —> Not valid statement

• 1 —> Answer incorrect statement

• Test —> Not valid statement

• print(“Test”) —> Not valid statement

• 3.5677 —> Not valid statement

• 9744803452 —> Correct answer statement

135

• 5.456465.4 —> Not valid statement

Program Writing/Program Writing 2:

—> Not valid answers statement

All correct answers —> Correct answers statement

Two correct answers and one wrong answer—> One correction statement

One correct answer and two wrong answers—> Two corrections statement

1, 1, 1 —> Incorrect answers statement

Test, 1, 1 —> Not valid answers statement

1, Test, 1 —> Not valid answers statement

1, 1, Test —> Not valid answers statement

1, Test, Test —> Not valid answers statement

Test, 1, Test —> Not valid answers statement

Test, Test, 1 —> Not valid answers statement

Test, Test, Test —> Not valid answers statement

136

	List of Tables
	List of Figures
	Glossary
	Abstract
	Declaration
	Intellectual Property Statement
	Acknowledgements
	1. Introduction
	2. Methodology and Redesign
	2.1 Finding Secondary Data
	2.2 Finding Primary Data
	2.3 Programming the Software

	3. Literature Review
	3.1 Barriers to Learning Programming
	3.2 Teaching Methods Currently In Use
	3.3 University Level Teaching Method
	3.3.1 Modifications to Traditional Method
	3.3.2 E-Learning
	3.3.3 Projects
	3.3.4 Competitions
	3.3.5 Puzzles
	3.4 Secondary School Level Teaching Method
	3.4.1 Modifications to Traditional Method
	3.4.2 Scratch

	4. Results and Discussion
	5. Cheatsheets and Software
	5.1 Cheatsheets
	5.2 MATLAB Engine API
	5.3 Software

	6. Conclusions
	6.1 Limitations
	6.2 Future Work

	7. References
	Appendices
	Appendix A - Reflection and Project Management
	Appendix B - Survey
	Appendix C - Participants’ Paragraph Answers and T-Test Values
	Appendix D - Cheatsheets
	Appendix E - Main Menu Code
	Appendix F - Questions Module Code
	Appendix G - InputFile.txt Code
	Appendix H - Test Data and Outcome

